A 'No Panacea Theorem' for multiple classifier combination

被引:0
|
作者
Hu, Roland [1 ]
Damper, R. I. [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the 'No Panacea Theorem' for classifier combination in the two-classifier two-class case. It states that if the combination function is continuous and diverse, there exists a situation in which the combination algorithm will always give very bad performance. Thus, there is no optimal algorithm, suitable in all situations. From this theorem, we see that the probability density functions (pdf's) play an important role in the performance of combination algorithms, so studying the pdf's becomes the first step in finding a good algorithm.
引用
收藏
页码:1250 / +
页数:2
相关论文
共 50 条
  • [41] Classifier combination for wafer segmentation
    Bourgeat, P
    Meriaudeau, F
    MACHINE VISION APPLICATIONS IN INDUSTRIAL INSPECTION XIII, 2005, 5679 : 36 - 43
  • [42] Fixed-dose combination therapy: panacea or poison?
    Rao, RB
    Goldfrank, LR
    INTENSIVE CARE MEDICINE, 1998, 24 (04) : 283 - 285
  • [43] Fixed-dose combination therapy: panacea or poison?
    R. B. Rao
    L. R. Goldfrank
    Intensive Care Medicine, 1998, 24 : 283 - 285
  • [44] SOUTHWEST NO PANACEA FOR PATIENTS WITH MULTIPLE-SCLEROSIS
    THOMAS, JJ
    NEW ENGLAND JOURNAL OF MEDICINE, 1973, 288 (20): : 1079 - 1080
  • [45] ON KLEINS COMBINATION THEOREM
    MASKIT, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 120 (03) : 499 - &
  • [46] The combination theorem and quasiconvexity
    Kapovich, I
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2001, 11 (02) : 185 - 216
  • [47] A REPRESENTATION THEOREM FOR LINEAR PATTERN CLASSIFIER TRAINING
    BOZINOVSKI, S
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (01): : 159 - 161
  • [48] A Novel Multiple Classifier Generation and Combination Framework Based on Fuzzy Clustering and Individualized Ensemble Construction
    Gao, Zhen
    Zand, Maryam
    Ruan, Jianhua
    2019 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA 2019), 2019, : 231 - 240
  • [49] A new measure of classifier diversity in multiple classifier system
    Fan, Tie-Gang
    Zhu, Ying
    Chen, Jun-Min
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 18 - +
  • [50] New measure of classifier dependency in multiple classifier systems
    Ruta, D
    Gabrys, B
    MULTIPLE CLASSIFIER SYSTEMS, 2002, 2364 : 127 - 136