On the Complexity of Computing Discrete Logarithms over Algebraic Tori

被引:0
|
作者
Isobe, Shuji [1 ]
Koizumi, Eisuke [1 ]
Nishigaki, Yuji [1 ]
Shizuya, Hiroki [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Dept Math & Comp Sci, Sendai, Miyagi 9808576, Japan
关键词
algebraic tori; order certified discrete logarithm; Turing reduction; CRYPTOGRAPHY; CRYPTOSYSTEMS; XTR;
D O I
10.1587/transinf.E97.D.442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the complexity of computing discrete logarithms over algebraic tori. We show that the order certified version of the discrete logarithm problem over general finite fields (OCDL, in symbols) reduces to the discrete logarithm problem over algebraic tori (TDL, in symbols) with respect to the polynomial-time Turing reducibility. This reduction means that if the prime factorization can be computed in polynomial time, then TDL is equivalent to the discrete logarithm problem over general finite fields with respect to the Turing reducibility.
引用
收藏
页码:442 / 447
页数:6
相关论文
共 50 条
  • [32] Trapdooring discrete logarithms on elliptic curves over rings
    Paillier, P
    ADVANCES IN CRYPTOLOGY ASIACRYPT 2000, PROCEEDINGS, 2000, 1976 : 573 - 584
  • [33] ON COMPUTING LOGARITHMS OVER GF(2P)
    HERLESTAM, T
    JOHANNESSON, R
    BIT, 1981, 21 (03): : 326 - 334
  • [34] Finiteness theorems for algebraic tori over function fields
    Rapinchuk, Andrei S.
    Rapinchuk, Igor A.
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (08) : 939 - 944
  • [35] Logarithms of algebraic numbers
    Kuehne, Lars
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2015, 27 (02): : 499 - 535
  • [36] COMPUTING DISCRETE LOGARITHMS IN THE JACOBIAN OF HIGH-GENUS HYPERELLIPTIC CURVES OVER EVEN CHARACTERISTIC FINITE FIELDS
    Velichka, M. D.
    Jacobson, M. J., Jr.
    Stein, A.
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 935 - 963
  • [37] A variant of the Galbraith-Ruprai algorithm for discrete logarithms with improved complexity
    Zhu, Yuqing
    Zhuang, Jincheng
    Yi, Hairong
    Lv, Chang
    Lin, Dongdai
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (05) : 971 - 986
  • [38] On post-processing in the quantum algorithm for computing short discrete logarithms
    Ekera, Martin
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (11) : 2313 - 2335
  • [39] On post-processing in the quantum algorithm for computing short discrete logarithms
    Martin Ekerå
    Designs, Codes and Cryptography, 2020, 88 : 2313 - 2335
  • [40] Quantum Algorithms for Computing Short Discrete Logarithms and Factoring RSA Integers
    Ekera, Martin
    Hastad, Johan
    POST-QUANTUM CRYPTOGRAPHY, PQCRYPTO 2017, 2017, 10346 : 347 - 363