On the Complexity of Computing Discrete Logarithms over Algebraic Tori

被引:0
|
作者
Isobe, Shuji [1 ]
Koizumi, Eisuke [1 ]
Nishigaki, Yuji [1 ]
Shizuya, Hiroki [1 ]
机构
[1] Tohoku Univ, Grad Sch Informat Sci, Dept Math & Comp Sci, Sendai, Miyagi 9808576, Japan
关键词
algebraic tori; order certified discrete logarithm; Turing reduction; CRYPTOGRAPHY; CRYPTOSYSTEMS; XTR;
D O I
10.1587/transinf.E97.D.442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the complexity of computing discrete logarithms over algebraic tori. We show that the order certified version of the discrete logarithm problem over general finite fields (OCDL, in symbols) reduces to the discrete logarithm problem over algebraic tori (TDL, in symbols) with respect to the polynomial-time Turing reducibility. This reduction means that if the prime factorization can be computed in polynomial time, then TDL is equivalent to the discrete logarithm problem over general finite fields with respect to the Turing reducibility.
引用
收藏
页码:442 / 447
页数:6
相关论文
共 50 条
  • [1] On the Complexity of Computing Discrete Logarithms over Algebraic Tori
    Isobe, Shuji
    Koizumi, Eisuke
    Nishigaki, Yuji
    Shizuya, Hiroki
    CRYPTOLOGY AND NETWORK SECURITY, PROCEEDINGS, 2009, 5888 : 433 - 442
  • [2] On asymptotic complexity of computing discrete logarithms over GF(p)
    Matyukhin, D.V.
    Discrete Mathematics and Applications, 2003, 13 (01): : 27 - 50
  • [3] COMPUTING DISCRETE LOGARITHMS IN AN INTERVAL
    Galbraith, Steven D.
    Pollard, John M.
    Ruprai, Raminder S.
    MATHEMATICS OF COMPUTATION, 2013, 82 (282) : 1181 - 1195
  • [4] On the cubic sieve method for computing discrete logarithms over prime fields
    Das, A
    Madhavan, CEV
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (12) : 1481 - 1495
  • [5] Computing discrete logarithms in quadratic orders
    Jacobson, MJ
    JOURNAL OF CRYPTOLOGY, 2000, 13 (04) : 473 - 492
  • [6] On computing algebraic functions using logarithms and exponentials
    Pennsylvania State Univ, University Park, United States
    SIAM J Comput, 1600, 2 (242-246):
  • [7] Computing Discrete Logarithms in Quadratic Orders
    Michael J. Jacobson
    Journal of Cryptology, 2000, 13 : 473 - 492
  • [8] On the discrete logarithm problem on algebraic tori
    Granger, R
    Vercauteren, F
    ADVANCES IN CRYPTOLOGY - CRYPTO 2005, PROCEEDINGS, 2005, 3621 : 66 - 85
  • [9] On Computing Discrete Logarithms in Bulk and Randomness Extractors
    Durnoga, Konrad
    Zralek, Bartosz
    FUNDAMENTA INFORMATICAE, 2015, 141 (04) : 343 - 364
  • [10] Quantum Complexity for Discrete Logarithms and Related Problems
    Hhan, Minki
    Yamakawa, Takashi
    Yun, Aaram
    ADVANCES IN CRYPTOLOGY - CRYPTO 2024, PT VI, 2024, 14925 : 3 - 36