Topological phases of lattice bosons with a dynamical gauge field

被引:6
|
作者
Raventos, David [1 ]
Grass, Tobias [1 ]
Julia-Diaz, Bruno [1 ,2 ,3 ]
Santos, Luis [4 ]
Lewenstein, Maciej [1 ,5 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, ES-08860 Barcelona, Spain
[2] Univ Barcelona, Fac Fis, Dept Estruct & Constituents Mat, ES-08028 Barcelona, Spain
[3] Univ Barcelona, IEEC UB, Inst Ciencies Cosmos, Marti & Franques 1, ES-08028 Barcelona, Spain
[4] Leibniz Univ Hannover, Inst Theoret Phys, Appelstr 2, DE-30167 Hannover, Germany
[5] ICREA Inst Catalana Recerca & Estudis Avancats, ES-08010 Barcelona, Spain
关键词
QUANTIZED HALL CONDUCTANCE; OPTICAL LATTICES; MAGNETIC-FIELDS; NEUTRAL ATOMS; EDGE STATES;
D O I
10.1103/PhysRevA.93.033605
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical lattices with a complex-valued tunneling term have become a standard way of studying gauge-field physics with cold atoms. If the complex phase of the tunneling is made density dependent, such a system features even a self-interacting or dynamical magnetic field. In this paper we study the scenario of a few bosons in either a static or a dynamical gauge field by means of exact diagonalization. The topological structures are identified computing their Chern number. Upon decreasing the atom-atom contact interaction, the effect of the dynamical gauge field is enhanced, giving rise to a phase transition between two topologically nontrivial phases.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Dynamical properties of ultracold bosons in an optical lattice
    Huber, S. D.
    Altman, E.
    Buechler, H. P.
    Blatter, G.
    PHYSICAL REVIEW B, 2007, 75 (08):
  • [22] Coexistence of superfluid and Mott phases of lattice bosons
    Barankov, R. A.
    Lannert, C.
    Vishveshwara, S.
    PHYSICAL REVIEW A, 2007, 75 (06):
  • [23] Quantum Phases of Cold Bosons in an Optical Lattice
    Aizenman, Michael
    Lieb, Elliot H.
    Seiringer, Robert
    Solovej, Jan Philip
    Yngvason, Jakob
    NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, : 805 - +
  • [24] Gauge interactions and topological phases of matter
    Tachikawa, Yuji
    Yonekura, Kazuya
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (09):
  • [25] Equilibrium phases of tilted dipolar lattice bosons
    Zhang, C.
    Safavi-Naini, A.
    Rey, Ana Maria
    Capogrosso-Sansone, B.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [26] On the stability of topological phases on a lattice
    Klich, Israel
    ANNALS OF PHYSICS, 2010, 325 (10) : 2120 - 2131
  • [27] Gauge theory of topological phases of matter
    Froehlich, Juerg
    Werner, Philipp
    EPL, 2013, 101 (04)
  • [28] Finite temperature phases and excitations of bosons on a square lattice: a cluster mean field study
    Malakar, Manali
    Sinha, Sudip
    Sinha, S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2023, 2023 (04):
  • [29] Gauge-Field Extended k . p Method and Novel Topological Phases
    Shao, L. B.
    Liu, Q.
    Xiao, R.
    Yang, Shengyuan A.
    Zhao, Y. X.
    PHYSICAL REVIEW LETTERS, 2021, 127 (07)
  • [30] Cluster dynamical mean field theory of quantum phases on a honeycomb lattice
    He, Rong-Qiang
    Lu, Zhong-Yi
    PHYSICAL REVIEW B, 2012, 86 (04):