Products of Toeplitz operators and Hankel operators

被引:1
|
作者
Lu, Yufeng [1 ]
Kong, Linghui [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
finite rank; compact perturbation; products; Toeplitz operator; Hankel operator;
D O I
10.4064/sm220-3-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first determine when the sum of products of Hankel and Toeplitz operators is equal to zero; then we characterize when the product of a Toeplitz operator and a Hankel operator is a compact perturbation of a Hankel operator or a Toeplitz operator and when it is a finite rank perturbation of a Toeplitz operator.
引用
收藏
页码:277 / 292
页数:16
相关论文
共 50 条
  • [21] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan ZHANG
    Guangfu CAO
    Li HE
    Chinese Annals of Mathematics,Series B, 2022, (03) : 401 - 416
  • [22] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Zhang, Yiyuan
    Cao, Guangfu
    He, Li
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2022, 43 (03) : 401 - 416
  • [23] FINITE RANK COMMUTATOR OF TOEPLITZ OPERATORS OR HANKEL OPERATORS
    Ding, Xuanhao
    Zheng, Dechao
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04): : 1099 - 1119
  • [24] Products of Toeplitz and Hankel Operators on Fock-Sobolev Spaces
    Yiyuan Zhang
    Guangfu Cao
    Li He
    Chinese Annals of Mathematics, Series B, 2022, 43 : 401 - 416
  • [25] Zero sums of products of Toeplitz and Hankel operators on the Hardy space
    Lee, Young Joo
    STUDIA MATHEMATICA, 2015, 227 (01) : 41 - 53
  • [26] Essentially commuting Hankel and Toeplitz operators
    Guo, KY
    Zheng, DC
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) : 121 - 147
  • [27] TOEPLITZ VERSUS HANKEL: SEMIBOUNDED OPERATORS
    Yafaev, Dmitri R.
    OPUSCULA MATHEMATICA, 2018, 38 (04) : 573 - 590
  • [28] PROPERTIES OF RATIONALIZED TOEPLITZ HANKEL OPERATORS
    Batra, Ruchika
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (01): : 67 - 78
  • [29] TOEPLITZ AND HANKEL TYPE OPERATORS ON AN ANNULUS
    JIANG, QT
    PENG, LZ
    MATHEMATIKA, 1994, 41 (82) : 266 - 276
  • [30] ON ASYMPTOTIC TOEPLITZ AND HANKEL-OPERATORS
    FEINTUCH, A
    GOHBERG ANNIVERSARY COLLECTION, VOL 2: TOPICS IN ANALYSIS AND OPERATOR THEORY, 1989, 41 : 241 - 254