A Pair of Generalized Derivations in Prime, Semiprime Rings and in Banach Algebras

被引:0
|
作者
Dhara, Basudeb [1 ]
Rahmani, Venus [2 ]
Sahebi, Shervin [2 ]
机构
[1] Belda Coll, Dept Math, Paschim Medinipur 721424, WB, India
[2] Islamic Azad Univ, Cent Tehran Branch, Dept Math, Tehran 13185768, Iran
来源
关键词
Prime ring; Semiprime ring; Generalized derivation; Utumi quotient ring; Banach algebra;
D O I
10.5269/bspm.37818
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring with extended centroid C, I a non-zero ideal of R and n >= 1 a fixed integer. If R admits the generalized derivations H and G such that (H(xy) + G(yx))(n) = (xy +/- yx) for all x, y is an element of I, then one of the following holds: 1. R is commutative; 2. n = 1 and H(x) = x and G(x) = +/- x for all x is an element of R. Moreover, we examine the case where R is a semiprime ring. Finally, we apply the above result to non-commutative Banach algebras.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 50 条
  • [41] Double centralizing automorphisms on prime, semiprime rings and Banach algebras
    Hermas, Abderrahman
    Oukhtite, Lahcen
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):
  • [42] On generalized left derivations in rings and Banach algebras
    Shakir Ali
    Aequationes mathematicae, 2011, 81 : 209 - 226
  • [43] On generalized left derivations in rings and Banach algebras
    Ali, Shakir
    AEQUATIONES MATHEMATICAE, 2011, 81 (03) : 209 - 226
  • [44] On commutativity of rings and Banach algebras with generalized derivations
    Ashraf, Mohammad
    Wani, Bilal Ahmad
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (02) : 155 - 163
  • [46] On Semiprime Rings with Generalized Derivations
    Khan, Mohd Rais
    Hasnain, Mohammad Mueenul
    KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (04): : 565 - 571
  • [47] On Semiprime Rings with Generalized Derivations
    Ashraf, Mohammad
    Nadeem-ur-Rehman
    Ali, Shakir
    Mozumder, Muzibur Rahman
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 25 - 32
  • [48] GENERALIZED DERIVATIONS ON SEMIPRIME RINGS
    De Filippis, Vincenzo
    Huang, Shuliang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1253 - 1259
  • [49] On generalized (α, β)-derivations of semiprime rings
    Ali, Faisal
    Chaudhry, Muhammad Anwar
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (03) : 383 - 393
  • [50] Prime and Semiprime Rings with n-Commuting Generalized Skew Derivations
    De Filippis, Vincenzo
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01): : 1 - 17