Performance characterization of irregular I/O at the extreme scale

被引:3
|
作者
Herbein, S. [1 ]
McDaniel, S. [1 ]
Podhorszki, N. [2 ]
Logan, J. [2 ]
Klasky, S. [2 ]
Taufer, M. [1 ]
机构
[1] Univ Delaware, Newark, DE 19716 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
Exascale; Irregular I/O; QMCPack; ENZO; ADIOS; HDF5;
D O I
10.1016/j.parco.2015.10.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper reports our experience with irregular I/O and describes lessons learned when running applications with such I/O on supercomputers at the extreme scale. Specifically, we study how irregularities in I/O patterns (i.e., irregular amount of data written per process at each I/O step) in scientific simulations can cause increasing I/O times and substantial loss in scalability. To this end, we quantify the impact of irregular I/O patterns on the I/O performance of scientific applications at the extreme scale by statistically modeling the irregular I/O behavior of two scientific applications: the Monte Carlo application QMCPack and the adaptive mesh refinement application ENZO. For our testing, we feed our model into I/O kernels of two well-known I/O data models (i.e., ADIOS and HDF) to measure the performance of the two applications' I/O under different I/O settings. Empirically, we show how the growing data sizes and the irregular I/O patterns in these applications are both relevant factors impacting performance. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 36
页数:20
相关论文
共 50 条
  • [31] Run-time library for parallel I/O for irregular applications
    No, J
    Choudhary, A
    PARALLEL COMPUTING: FUNDAMENTALS, APPLICATIONS AND NEW DIRECTIONS, 1998, 12 : 437 - 440
  • [32] Optimizing I/O for irregular applications on distributed-memory machines
    Carretero, J
    No, J
    Choudhary, A
    PARALLEL COMPUTATION, 1999, 1557 : 470 - 479
  • [33] A NEW APPROACH TO I/O PERFORMANCE EVALUATION - SELF-SCALING I/O BENCHMARKS, PREDICTED I/O PERFORMANCE
    CHEN, PM
    PATTERSON, DA
    ACM TRANSACTIONS ON COMPUTER SYSTEMS, 1994, 12 (04): : 308 - 339
  • [34] A characterization of workflow management systems for extreme-scale applications
    da Silva, Rafael Ferreira
    Filgueira, Rosa
    Pietri, Ilia
    Jiang, Ming
    Sakellariou, Rizos
    Deelman, Ewa
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2017, 75 : 228 - 238
  • [35] High Performance I/O
    Jackson, Adrian
    Reid, Fiona
    Hein, Joachim
    Soba, Alejandro
    Saez, Xavier
    PROCEEDINGS OF THE 19TH INTERNATIONAL EUROMICRO CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING, 2011, : 349 - 356
  • [36] The influence of operating systems on the performance of collective operations at extreme scale
    Beckman, Pete
    Iskra, Kamil
    Yoshii, Kazutomo
    Coghlan, Susan
    2006 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, VOLS 1 AND 2, 2006, : 81 - +
  • [37] Connecting performance analysis and visualization to advance extreme scale computing
    Bode, Arndt
    Engesser, Hermann
    Informatik-Spektrum, 2014, 37 (03) : 257 - 259
  • [38] Quantitative modeling of power performance tradeoffs on extreme scale systems
    Yu, Li
    Zhou, Zhou
    Wallace, Sean
    Papka, Michael E.
    Lan, Zhiling
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2015, 84 : 1 - 14
  • [39] Understanding I/O Performance Using I/O Skeletal Applications
    Logan, Jeremy
    Klasky, Scott
    Abbasi, Hasan
    Liu, Qing
    Ostrouchov, George
    Parashar, Manish
    Podhorszki, Norbert
    Tian, Yuan
    Wolf, Matthew
    EURO-PAR 2012 PARALLEL PROCESSING, 2012, 7484 : 77 - 88
  • [40] I/O performance evaluation with Parabench - programmable I/O benchmark
    Mordvinova, Olga
    Runz, Dennis
    Kunkel, Julian M.
    Ludwig, Thomas
    ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 2119 - 2128