√2 subdivision for quadrilateral meshes

被引:23
|
作者
Li, GQ
Ma, WY [1 ]
Bao, HJ
机构
[1] City Univ Hong Kong, Dept Mfg Engn & Engn Management, Hong Kong, Peoples R China
[2] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou 310027, Peoples R China
来源
VISUAL COMPUTER | 2004年 / 20卷 / 2-3期
关键词
subdivision surface; root; 2; subdivision; 4-8; quadrilateral mesh; surface modeling;
D O I
10.1007/s00371-003-0238-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a root2subdivision scheme for quadrilateral meshes that can be regarded as an extension of a 4-8 subdivision with new subdivision rules and improved capability and performance. The proposed scheme adopts a so-called root2split operator to refine a control mesh such that the face number of the refined mesh generally equals the edge number and is thus about twice the face number of the coarse mesh. Smooth rules are designed in reference to the 4-8 subdivision, while a new set of weights is developed to balance the flatness of surfaces at vertices of different valences. Compared to the 4-8 subdivision, the presented scheme can be naturally generalized for arbitrary control nets and is more efficient in both space and computing time management. Analysis shows that limit surfaces produced by the scheme are C-4 continuous for regular control meshes and G(1) continuous at extraordinary vertices.
引用
收藏
页码:180 / 198
页数:19
相关论文
共 50 条
  • [41] Structure simplification of planar quadrilateral meshes
    Akram, Muhammad Naeem
    Xu, Kaoji
    Chen, Guoning
    COMPUTERS & GRAPHICS-UK, 2022, 109 : 1 - 14
  • [42] On the finite element method on quadrilateral meshes
    Boffi, Daniele
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (10-11) : 1271 - 1282
  • [43] Finite element approximation on quadrilateral meshes
    Arnold, DN
    Boffi, D
    Falk, RS
    Gastaldi, L
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2001, 17 (11): : 805 - 812
  • [44] Quadrilateral meshes with provable angle bounds
    F. Betul Atalay
    Suneeta Ramaswami
    Dianna Xu
    Engineering with Computers, 2012, 28 : 31 - 56
  • [45] MINIMIZATION OF THE DISTORTION OF QUADRILATERAL AND HEXAHEDRAL MESHES
    Sarrate, Josep
    Coll, Abel
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2007, 23 (01): : 55 - 76
  • [46] Wavelets for adaptively refined 3√2-subdivision meshes
    Linsen, L.
    Hamann, B.
    Joy, K.I.
    International Journal of Computers and Applications, 2007, 29 (03) : 223 - 231
  • [47] A simple subdivision formula for quadrilateral Wachspress patches
    Dikshit, HP
    Ojha, A
    COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (07) : 395 - 399
  • [48] Quadrilateral multiblock decomposition via auxiliary subdivision
    Sun, Liang
    Armstrong, Cecil G.
    Robinson, Trevor T.
    Papadimitrakis, Dimitrios
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2021, 8 (03) : 871 - 893
  • [49] Displaced subdivision surfaces of animated meshes
    Lee, Hyunjun
    Ahn, Minsu
    Lee, Seungyong
    COMPUTERS & GRAPHICS-UK, 2011, 35 (03): : 532 - 541
  • [50] Surface interpolation of meshes by geometric subdivision
    Yang, XN
    COMPUTER-AIDED DESIGN, 2005, 37 (05) : 497 - 508