Comparison of two Pareto frontier approximations

被引:8
|
作者
Berezkin, V. E. [1 ]
Lotov, A. V. [1 ]
机构
[1] Russian Acad Sci, Dorodnicyn Comp Ctr, Moscow 119333, Russia
基金
俄罗斯基础研究基金会;
关键词
multicriteria optimization; comparison of Pareto frontier approximations; Edgeworth-Pareto hull; inclusion function; VISUALIZATION; SET;
D O I
10.1134/S0965542514090048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for comparing two approximations to the multidimensional Pareto frontier in nonconvex nonlinear multicriteria optimization problems, namely, the inclusion functions method is described. A feature of the method is that Pareto frontier approximations are compared by computing and comparing inclusion functions that show which fraction of points of one Pareto frontier approximation is contained in the neighborhood of the Edgeworth-Pareto hull approximation for the other Pareto frontier.
引用
收藏
页码:1402 / 1410
页数:9
相关论文
共 50 条
  • [41] Maximizing a Linear Fractional Function on a Pareto Efficient Frontier
    S.T. Hackman
    U. Passy
    Journal of Optimization Theory and Applications, 2002, 113 : 83 - 103
  • [42] Fair Data Representation for Machine Learning at the Pareto Frontier
    Xu, Shizhou
    Strohmer, Thomas
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [43] Towards Higher Pareto Frontier in Multilingual Machine Translation
    Huang, Yichong
    Feng, Xiaocheng
    Geng, Xinwei
    Li, Baohang
    Qin, Bing
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 3802 - 3818
  • [44] Reciprocal Optimal Control Problems and the Associated Pareto Frontier
    L. Grosset
    B. Viscolani
    Journal of Optimization Theory and Applications, 2006, 130 : 113 - 123
  • [45] Approximation and visualization of the Pareto frontier for nonconvex multicriteria problems
    Lotov, AV
    Kamenev, GK
    Berezkin, VE
    DOKLADY MATHEMATICS, 2002, 66 (02) : 260 - 262
  • [46] A paradoxical Pareto frontier in the cake-cutting context
    Taylor, AD
    MATHEMATICAL SOCIAL SCIENCES, 2005, 50 (02) : 227 - 233
  • [47] Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions
    Chenglin Liu
    Ronald R. Charpentier
    Jin Su
    Mathematical Geosciences, 2011, 43 : 847 - 859
  • [48] Comparison of Two Methods Used to Model Shape Parameters of Pareto Distributions
    Liu, Chenglin
    Charpentier, Ronald R.
    Su, Jin
    MATHEMATICAL GEOSCIENCES, 2011, 43 (07) : 847 - 859
  • [49] Sequence-defined Pareto frontier of a copolymer structure
    Bale, Ashwin A.
    Gautham, Sachin M. B.
    Patra, Tarak K.
    JOURNAL OF POLYMER SCIENCE, 2022, 60 (14) : 2100 - 2113
  • [50] The normalized normal constraint method for generating the Pareto frontier
    A. Messac
    A. Ismail-Yahaya
    C.A. Mattson
    Structural and Multidisciplinary Optimization, 2003, 25 : 86 - 98