Energy costs of salt tolerance in crop plants

被引:318
|
作者
Munns, Rana [1 ,2 ,3 ]
Day, David A. [4 ]
Fricke, Wieland [5 ]
Watt, Michelle [6 ]
Arsova, Borjana [6 ]
Barkla, Bronwyn J. [7 ]
Bose, Jayakumar [8 ]
Byrt, Caitlin S. [8 ,9 ]
Chen, Zhong-Hua [10 ]
Foster, Kylie J. [11 ]
Gilliham, Matthew [8 ]
Henderson, Sam W. [12 ]
Jenkins, Colin L. D. [4 ]
Kronzucker, Herbert J. [13 ]
Miklavcic, Stanley J. [11 ]
Plett, Darren [13 ]
Roy, Stuart J. [14 ]
Shabala, Sergey [15 ,16 ]
Shelden, Megan C. [8 ]
Soole, Kathleen L. [4 ]
Taylor, Nicolas L. [17 ,18 ]
Tester, Mark [19 ]
Wege, Stefanie [8 ]
Wegner, Lars H. [20 ]
Tyerman, Stephen D. [8 ]
机构
[1] Univ Western Australia, Australian Res Council, Ctr Fxeellence Plant Energy Biol, Crawley, WA 6009, Australia
[2] Univ Western Australia, Sch Agr & Environm, Crawley, WA 6009, Australia
[3] CSIRO, Agr & Food, Canberra, ACT 2601, Australia
[4] Flinders Univ S Australia, Coll Sci & Engn, GPO Box 2100, Adelaide, SA 5001, Australia
[5] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 4, Ireland
[6] Forschungszentrum Juelich, Plant Sci, Inst Bio & Geosci, Helmholtz Assoc, D-52425 Julich, Germany
[7] Southern Cross Univ, Southern Cross Plant Sci, Lismore, NSW 2481, Australia
[8] Univ Adelaide, Australian Res Council, Ctr Excellence Plant Energy Biol, Sch Agr Food & Wine, Glen Osmond, SA 5064, Australia
[9] Australian Natl Univ, Res Sch Biol, Canberra, ACT 2600, Australia
[10] Western Sydney Univ, Sch Sci & Hlth, Penrith, NSW 2751, Australia
[11] Univ South Australia, Phen & Bioinformat Res Ctr, Sch Informat Technol & Math Sci, Mawson Lakes, SA 5095, Australia
[12] CSIRO, Agr & Food, Urrbrae, SA 5064, Australia
[13] Univ Melbourne, Sch Agr & Food, Fac Vet & Agr Sci, Melbourne, Vic 3010, Australia
[14] Univ Adelaide, Australian Res Council, Ind Transformat Res Hub Wheat Hot & Dry Climate, Sch Agr Food & Wine, Urrbrae, SA 5064, Australia
[15] Univ Tasmania, Tasmanian Inst Agr, Private Bag 54, Hobart, Tas 7001, Australia
[16] Foshan Univ, Int Ctr Environm Membrane Biol, Foshan 528000, Peoples R China
[17] Univ Western Australia, Australian Res Council, Ctr Excellence Plant Energy Biol, Sch Mol Sci, Crawley, WA 6009, Australia
[18] Univ Western Australia, Australian Res Council, Ctr Excellence Plant Energy Biol, Inst Agr, Crawley, WA 6009, Australia
[19] King Abdullah Univ Sci & Technol, Biol & Environm Sci & Engn Div BESE, Thuwal 239556900, Saudi Arabia
[20] Karlsruhe Inst Technol, Inst Pulsed Power & Microwave Technol IHM, D-76344 Eggenstein Leopoldshafen, Germany
基金
澳大利亚研究理事会;
关键词
barley and wheat; energy costs; membrane transport; photosynthesis; respiration; root anatomy; salt tolerance; sodium and chloride transport; PROTON-PUMPING PYROPHOSPHATASE; NONSELECTIVE CATION CHANNELS; ROOT-GROWTH RESPONSE; PLASMA-MEMBRANE; SALINITY TOLERANCE; ALTERNATIVE OXIDASE; WATER TRANSPORT; MESEMBRYANTHEMUM-CRYSTALLINUM; MITOCHONDRIAL RESPIRATION; ARABIDOPSIS ROOTS;
D O I
10.1111/nph.15864
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+-ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.
引用
收藏
页码:1072 / 1090
页数:19
相关论文
共 50 条
  • [31] CALCIUM AND SALT TOLERANCE OF PLANTS
    SHEAR, CB
    SCIENCE, 1970, 167 (3923) : 1387 - &
  • [32] Mechanisms of heat tolerance in crop plants
    Asthir, B.
    BIOLOGIA PLANTARUM, 2015, 59 (04) : 620 - 628
  • [33] The relative aluminum tolerance of crop plants
    McLean, FT
    Gilbert, BE
    SOIL SCIENCE, 1927, 24 (03) : 163 - 175
  • [34] Improving Flooding Tolerance of Crop Plants
    Mustroph, Angelika
    AGRONOMY-BASEL, 2018, 8 (09):
  • [35] Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection
    Atta, Kousik
    Mondal, Saptarshi
    Gorai, Shouvik
    Singh, Aditya Pratap
    Kumari, Amrita
    Ghosh, Tuhina
    Roy, Arkaprava
    Hembram, Suryakant
    Gaikwad, Dinkar Jagannath
    Mondal, Subhasis
    Bhattacharya, Sudip
    Jha, Uday Chand
    Jespersen, David
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [36] INFLUENCE OF SOIL-SALINITY ON THE ROOT EXUDATION OF 2 CROP PLANTS DIFFERING IN THEIR TOLERANCE TO SALT
    GOPAL, GR
    RAO, GR
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1985, 8 (07): : 199 - 201
  • [37] SALT TOLERANCE OF 5 CALIFORNIA SALT MARSH PLANTS
    BARBOUR, MG
    DAVIS, CB
    AMERICAN MIDLAND NATURALIST, 1970, 84 (01): : 262 - &
  • [38] SALT TOLERANCE AND CROP PRODUCTION - A COMPREHENSIVE APPROACH
    PASTERNAK, D
    ANNUAL REVIEW OF PHYTOPATHOLOGY, 1987, 25 : 271 - 291
  • [39] CALCIUM AND SALT TOLERANCE OF PLANTS - REPLY
    LAHAYE, PA
    EPSTEIN, E
    SCIENCE, 1970, 167 (3923) : 1388 - &
  • [40] Salt Tolerance of Sego Supreme™ Plants
    Paudel, Asmita
    Guo, Shiwei
    Chen, Ji Jhong
    Wang, Yuxiang
    Sun, Youping
    Rupp, Larry A.
    Anderson, Richard
    HORTSCIENCE, 2019, 54 (09) : S283 - S283