Polysaccharide-based Noncovalent Assembly for Targeted Delivery of Taxol

被引:45
|
作者
Yang, Yang [1 ,3 ]
Zhang, Ying-Ming [1 ]
Chen, Yong [1 ,2 ]
Chen, Jia-Tong [4 ]
Liu, Yu [1 ,2 ]
机构
[1] Nankai Univ, Dept Chem, State Key Lab Elementoorgan Chem, Tianjin 300071, Peoples R China
[2] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300071, Peoples R China
[3] Hebei Univ Technol, Sch Chem Engn & Technol, Tianjin 300130, Peoples R China
[4] Nankai Univ, Dept Biochem & Mol Biol, Coll Life Sci, Tianjin 300071, Peoples R China
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
DRUG-DELIVERY; BRIDGED BIS(PERMETHYL-BETA-CYCLODEXTRIN)S; PHOTOTHERMAL ABLATION; OXIDE; NANOPARTICLES; THERAPY; ARCHITECTURES; CONSTRUCTION; METASTASIS; NANOSHELLS;
D O I
10.1038/srep19212
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The construction of synthetic straightforward, biocompatible and biodegradable targeted drug delivery system with fluorescent tracking abilities, high anticancer activities and low side effects is still a challenge in the field of biochemistry and material chemistry. In this work, we constructed targeted paclitaxel (Taxol) delivery nanoparticles composed of permethyl-beta-cyclodextrin modified hyaluronic acid (HApCD) and porphyrin modified paclitaxel prodrug (PorTaxol), through host-guest and amphiphilic interactions. The obtained nanoparticles (HATXP) were biocompatible and enzymatic biodegradable due to their hydrophilic hyaluronic acid (HA) shell and hydrophobic Taxol core, and exhibited specific targeting internalization into cancer cells via HA receptor mediated endocytosis effects. The cytotoxicity experiments showed that the HATXP exhibited similar anticancer activities to, but much lower side effects than commercial anticancer drug Taxol. The present work would provide a platform for targeted paclitaxel drug delivery and a general protocol for the design of advanced multifunctional nanoscale biomaterials for targeted drug/gene delivery.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Nanostructured polysaccharide-based carriers for antimicrobial peptide delivery
    Mohtashamian S.
    Boddohi S.
    Journal of Pharmaceutical Investigation, 2017, 47 (2) : 85 - 94
  • [22] Polysaccharide-based nanocarriers for efficient transvascular drug delivery
    Zhang, Min
    Ma, He
    Wang, Xijie
    Yu, Bing
    Cong, Hailin
    Shen, Youqing
    JOURNAL OF CONTROLLED RELEASE, 2023, 354 : 167 - 187
  • [23] Polysaccharide-based responsive nanogels for controlled drug delivery
    Auzely-Velty, Rachel
    Jing, Jing
    Hachet, Emilie
    Alaimo, David
    De Vlieghere, Elly
    Szarpak, Anna
    Jerome, Christine
    De Geest, Bruno
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [24] Polysaccharide-based systems in drug and gene delivery Preface
    Wang, Yanming
    Wang, Peng George
    ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (09) : 1121 - 1122
  • [25] Polysaccharide-Based Nanomaterials for Ocular Drug Delivery: A Perspective
    Yu, Haozhe
    Wu, Wenyu
    Lin, Xiang
    Feng, Yun
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [26] Recent Reports on Polysaccharide-Based Materials for Drug Delivery
    Kurczewska, Joanna
    POLYMERS, 2022, 14 (19)
  • [27] Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems
    Kwiecien, Iwona
    Kwiecien, Michal
    GELS, 2018, 4 (02)
  • [28] Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery
    Collado-Gonzalez, Mar
    Ferreri, Maria Cristina
    Freitas, Alessandra R.
    Santos, Ana Claudia
    Ferreira, Nuno R.
    Carissimi, Guzman
    Sequeira, Joana A. D.
    Diaz Banos, E. Guillermo
    Villora, Gloria
    Veiga, Francisco
    Ribeiro, Antonio
    MARINE DRUGS, 2020, 18 (01)
  • [29] Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis
    Baranov, Nicolae
    Popa, Marcel
    Atanase, Leonard Ionut
    Ichim, Daniela Luminita
    MOLECULES, 2021, 26 (09):
  • [30] Polysaccharide-based aerogel microspheres for oral drug delivery
    Garcia-Gonzalez, C. A.
    Jin, M.
    Gerth, J.
    Alvarez-Lorenzo, C.
    Smirnova, I.
    CARBOHYDRATE POLYMERS, 2015, 117 : 797 - 806