A stable finite-difference time-domain scheme for local time-stepping on an adaptive mesh

被引:2
|
作者
Pederson, Dylan M. [1 ]
Raja, Laxminarayan L. [1 ]
机构
[1] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
关键词
Adaptive mesh refinement; Finite-difference time-domain; Electromagnetics; Higher-order methods; Stability; SUBGRIDDING ALGORITHM; DISPERSIVE MEDIA; FDTD ALGORITHM; MULTIGRID FDTD; STABILITY; REFINEMENT; SPACE;
D O I
10.1016/j.jcp.2019.05.043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Physical effects driven by strong electromagnetic fields often occur in regions of highly localized fields on a scattering object. Unfortunately, the most common numerical technique for simulating time-domain electromagnetics, known as Finite-Difference Time Domain (FDTD), is ill-equipped to handle such problems. A common solution to capture physics across many spatial scales is to use an adaptive mesh, which resolves temporal or spatial features exactly when and where they are needed, avoiding extra computation in space-time regions where it is unnecessary. We present a minimal modification to the FDTD algorithm that allows for a stable late-time solution to Maxwell's equations on an adaptive mesh with a Courant-Friedrichs-Levy limit of 5/6. An emphasis is placed on creating a simple, flexible, and easy to understand algorithm. The algorithm is implemented in 1D, 2D and 3D for geometries which are dynamic or possess large disparities in spatial or temporal scales. An example is presented which demonstrates the use of the algorithm in a resonant dielectric disc with a small slot. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:456 / 476
页数:21
相关论文
共 50 条
  • [41] Stability of symplectic finite-difference time-domain methods
    Saitoh, I
    Takahashi, N
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 665 - 668
  • [42] A Local Time-stepping Discontinuous Galerkin Time-Domain Scheme for Simulation of Electromagnetic Problems Involving Resistive Boundary Condition
    Sun, Ruitao
    Dong, Ming
    Chen, Liang
    Bagci, Hakan
    2024 IEEE INC-USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2024, : 169 - 169
  • [43] Time-domain finite-difference beam propagation method
    Masoudi, HM
    AlSunaidi, MA
    Arnold, JM
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (10) : 1274 - 1276
  • [44] FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR ANTENNA RADIATION
    TIRKAS, PA
    BALANIS, CA
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (03) : 334 - 340
  • [45] FINITE-DIFFERENCE TIME-DOMAIN MODELING OF CURVED SURFACES
    JURGENS, TG
    TAFLOVE, A
    UMASHANKAR, K
    MOORE, TG
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (04) : 357 - 366
  • [46] Introduction to the Finite-Difference Time-Domain (FDTD) Technique
    Connor, Sam
    2008 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1-3, 2008, : 972 - 981
  • [47] SELECTIVE SURVEY OF THE FINITE-DIFFERENCE TIME-DOMAIN LITERATURE
    SHLAGER, KL
    SCHNEIDER, JB
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 1995, 37 (04) : 39 - 57
  • [48] A novel finite-difference time-domain wave propagator
    Akleman, F
    Sevgi, L
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2000, 48 (05) : 839 - 841
  • [49] Uncertainty Analyses in the Finite-Difference Time-Domain Method
    Edwards, Robert S.
    Marvin, Andrew C.
    Porter, Stuart J.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2010, 52 (01) : 155 - 163
  • [50] Finite-difference time-domain method in custom hardware?
    Schneider, RN
    Okoniewski, MM
    Turner, LE
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2002, 12 (12) : 488 - 490