Deep-Space Optical Communication System (DOCS) for ESA's Space Weather Mission to Lagrange Orbit L5

被引:0
|
作者
Sodnik, Zoran [1 ]
Heese, Clemens [1 ]
Arapoglou, Pantelis-Daniel [1 ]
Schulz, Klaus-Juergen [2 ]
Zayer, Igor [2 ]
Daddato, Robert [2 ]
Kraft, Stefan [2 ]
机构
[1] European Space Agcy, European Space Res & Technol Ctr, Noordwijk, Netherlands
[2] European Space Agcy, European Space Operat Ctr, Darmstadt, Germany
来源
2017 IEEE INTERNATIONAL CONFERENCE ON SPACE OPTICAL SYSTEMS AND APPLICATIONS (ICSOS) | 2017年
关键词
DOCS; L5; Optel-mu; Optel-D; SSA; SWE; DST; DGT; deep-space optical communication; optical communication terminal; optical ground station;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
ESA plans to embark the Deep-space Optical Communications System (DOCS) on the Space WEather (SWE) mission to the Sun-Earth Lagrange point L5 in the frame of its Space Situational Awareness (SSA) program. DOCS is an in orbit technology demonstration that also serves a scientific objective, namely the transfer of high-resolution solar imagery. The characteristics of the SWE L5 mission provide substantial advantages for deep-space optical communication, because the equidistant triangular orbital geometry between the sun, the Earth, and L5 (all three distances are equal to 1 AU approximate to 150 million kin) ensures that the sun is always separated by 60 degrees from both the space and the ground terminal. This allows for very efficient solar stray-light shielding and thermal management. It also reduces the pointing requirements of the DOCS Space Terminal (DST); a coarse pointing mechanism is not required, nor is a point-ahead assembly. The SSA SWE L5 mission Phase A, Phase B1 and B2 studies to be conducted 2017-2019 will take into account the accommodation and interfacing of the DST. DOCS aims to demonstrate a data rate of 10 Mbps over 1 AU to a 4-meter optical ground station. The development of the DST will follow a similar approach as foreseen for the Asteroid Impact Mission (AIM), namely to increase the technology readiness level (TRL) of existing developments wherever possible, or reasonable. The DST will be located on a side panel of the S/C, and will constantly face the Earth. Residual attitude movements (pointing errors) of the S/C will be covered by the field-of view of the DST telescope (an aperture diameter of 200 mm is envisaged) and by a fine pointing assembly. ESA is also embarking on a study to develop a 4-meter class DOCS ground terminal (DGT). Furthermore, the Consultative Committee for Space Data Systems (CCSDS) is currently developing a standard ("Blue Book") for "High Photon Efficiency Optical Communications". DOCS will serve as one of two implementations of the standard, which are required for it to become applicable.
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [21] Diversity Reception for Deep-Space Optical Communication Using Linear Projections
    Mohamed, Mohamed Darwish A.
    Hranilovic, Steve
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2010, 16 (05) : 1071 - 1083
  • [22] Development of a laser transceiver system for deep-space optical communications
    Bruzzi, JR
    Millard, WP
    Boone, BG
    Connelly, JR
    Liu, B
    FREE-SPACE LASER COMMUNICATION AND LASER IMAGING II, 2002, 4821 : 202 - 213
  • [23] Optical tracking of deep-space spacecraft in Halo L2 orbits The Gaia mission as a pilot case
    Buzzoni, Alberto
    Altavilla, Giuseppe
    Galleti, Silvia
    ADVANCES IN SPACE RESEARCH, 2016, 57 (07) : 1515 - 1527
  • [24] A preliminary optical design for the JANUS Camera of ESA's space mission JUICE
    Greggio, D.
    Magrin, D.
    Ragazzoni, R.
    Munari, M.
    Cremonese, G.
    Bergomi, M.
    Dima, M.
    Farinato, J.
    Marafatto, L.
    Viotto, V.
    Debei, S.
    Della Corte, V.
    Palumbo, P.
    Hoffmann, H.
    Jaumann, R.
    Michaelis, H.
    Schmitz, N.
    Schipani, P.
    Lara, L. M.
    SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2014, 9143
  • [25] Feasibility of a Deep-Space CubeSat Mission with a Stage-Based Electrospray Propulsion System
    Jia-Richards, Oliver
    Lozano, Paulo C.
    Sternberg, David C.
    Grebow, Daniel
    Mohan, Swati
    2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
  • [26] Multidimensional Pulse-Position Coded-Modulation for Deep-Space Optical Communication
    Djordjevic, Ivan B.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (18) : 1355 - 1357
  • [27] Potential of vortex beams with orbital angular momentum modulation for deep-space optical communication
    Wang, Xiaorui
    Liu, Yejun
    Guo, Lei
    Li, Hui
    OPTICAL ENGINEERING, 2014, 53 (05)
  • [28] Adaptive compound control of laser beam jitter in deep-space optical communication systems
    Su, Yunhao
    Han, Junfeng
    Wang, Xuan
    Ma, Caiwen
    Wu, Jianming
    OPTICS EXPRESS, 2024, 32 (13): : 23228 - 23244
  • [29] A small mission concept to the Sun-Earth Lagrangian L5 point for innovative solar, heliospheric and space weather science
    Lavraud, B.
    Liu, Y.
    Segura, K.
    He, J.
    Qin, G.
    Temmer, M.
    Vial, J-C
    Xiong, M.
    Davies, J. A.
    Rouillard, A. P.
    Pinto, R.
    Auchere, F.
    Harrison, R. A.
    Eyles, C.
    Gan, W.
    Lamy, P.
    Xia, L.
    Eastwood, J. P.
    Kong, L.
    Wang, J.
    Wimmer-Schweingruber, R. F.
    Zhang, S.
    Zong, Q.
    Soucek, J.
    An, J.
    Prech, L.
    Zhang, A.
    Rochus, P.
    Bothmer, V.
    Janvier, M.
    Maksimovic, M.
    Escoubet, C. P.
    Kilpua, E. K. J.
    Tappin, J.
    Vainio, R.
    Poedts, S.
    Dunlop, M. W.
    Savani, N.
    Gopalswamy, N.
    Bale, S. D.
    Li, G.
    Howard, T.
    DeForest, C.
    Webb, D.
    Lugaz, N.
    Fuselier, S. A.
    Dalmasse, K.
    Tallineau, J.
    Vranken, D.
    Fernandez, J. G.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2016, 146 : 171 - 185
  • [30] Sub-microradian pointing system design for deep-space optical communications
    Lee, SH
    Alexander, JW
    Ortiz, GG
    FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XIII, 2001, 4272 : 104 - 111