Non-parametric regression in clustered multistate current status data with informative cluster size

被引:3
|
作者
Lan, Ling [1 ]
Bandyopadhyay, Dipankar [2 ]
Datta, Somnath [3 ]
机构
[1] Augusta Univ, Dept Biostat & Epidemiol, Augusta, GA 30912 USA
[2] Virginia Commonwealth Univ, Dept Biostat, Med Coll Virginia Campus, Richmond, VA 23298 USA
[3] Univ Florida, Dept Biostat, Gainesville, FL 32611 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
censoring; Markov; multivariate time-to-event data; state occupation probability; periodontal disease; FAILURE TIME DATA; STAGE OCCUPATION PROBABILITIES; INTEGRATED TRANSITION HAZARDS; RIGHT-CENSORED-DATA; PERIODONTAL-DISEASE; COMPETING RISKS; SURVIVAL-DATA; MODELS; INFERENCE; ENTRY;
D O I
10.1111/stan.12099
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Datasets examining periodontal disease records current (disease) status information of tooth-sites, whose stochastic behavior can be attributed to a multistate system with state occupation determined at a single inspection time. In addition, the tooth-sites remain clustered within a subject, and the number of available tooth-sites may be representative of the true periodontal disease status of that subject, leading to an 'informative cluster size' scenario. To provide insulation against incorrect model assumptions, we propose a non-parametric regression framework to estimate state occupation probabilities at a given time and state exit/entry distributions, utilizing weighted monotonic regression and smoothing techniques. We demonstrate the superior performance of our proposed weighted estimators over the unweighted counterparts via a simulation study and illustrate the methodology using a dataset on periodontal disease.
引用
收藏
页码:31 / 57
页数:27
相关论文
共 50 条
  • [11] Non-parametric methods for recurrent event data with informative and non-informative censorings
    Wang, MC
    Chiang, CT
    STATISTICS IN MEDICINE, 2002, 21 (03) : 445 - 456
  • [12] Review of methods for handling confounding by cluster and informative cluster size in clustered data
    Seaman, Shaun
    Pavlou, Menelaos
    Copas, Andrew
    STATISTICS IN MEDICINE, 2014, 33 (30) : 5371 - 5387
  • [13] Semiparametric Regression Analysis of Clustered Interval-Censored Failure Time Data with Informative Cluster Size
    Zhang, Xinyan
    Sun, Jianguo
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2013, 9 (02): : 205 - 214
  • [14] Regression analysis of clustered failure time data with informative cluster size under the additive transformation models
    Ling Chen
    Yanqin Feng
    Jianguo Sun
    Lifetime Data Analysis, 2017, 23 : 651 - 670
  • [15] Regression analysis of clustered failure time data with informative cluster size under the additive transformation models
    Chen, Ling
    Feng, Yanqin
    Sun, Jianguo
    LIFETIME DATA ANALYSIS, 2017, 23 (04) : 651 - 670
  • [16] Semiparametric regression of clustered current status data
    Feng, Yanqin
    Lin, Shurong
    Li, Yang
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (10) : 1724 - 1737
  • [17] Non-parametric kernel regression for multinomial data
    Okumura, Hidenori
    Naito, Kanta
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (09) : 2009 - 2022
  • [18] Non-parametric regression with dependent censored data
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (02) : 228 - 247
  • [19] Non-parametric quantile regression with censored data
    Gannoun, A
    Saracco, J
    Yuan, A
    Bonney, GE
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (04) : 527 - 550
  • [20] Variance estimation in tests of clustered categorical data with informative cluster size
    Gregg, Mary
    Datta, Somnath
    Lorenz, Doug
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (11) : 3396 - 3408