Calibration and Localization of Optically Pumped Magnetometers Using Electromagnetic Coils

被引:10
|
作者
Iivanainen, Joonas [1 ,2 ]
Borna, Amir [1 ]
Zetter, Rasmus [2 ]
Carter, Tony R. [1 ]
Stephen, Julia M. [3 ]
McKay, Jim [4 ]
Parkkonen, Lauri [2 ]
Taulu, Samu [5 ]
Schwindt, Peter D. D. [1 ]
机构
[1] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[2] Aalto Univ, Sch Sci, Dept Neurosci & Biomed Engn, FI-00076 Aalto, Finland
[3] Mind Res Network, Albuquerque, NM 87106 USA
[4] Candoo Syst Inc, Port Coquitlam, BC V3C 5M2, Canada
[5] Univ Washington, Seattle, WA 98195 USA
基金
欧洲研究理事会; 美国国家卫生研究院;
关键词
calibration; sensor localization; co-registration; optically pumped magnetometer; magnetoencephalography; on-scalp MEG; fluxgate magnetometer; electromagnetic coil; MAGNETOENCEPHALOGRAPHY;
D O I
10.3390/s22083059
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, we propose a method to estimate the position, orientation, and gain of a magnetic field sensor using a set of (large) electromagnetic coils. We apply the method for calibrating an array of optically pumped magnetometers (OPMs) for magnetoencephalography (MEG). We first measure the magnetic fields of the coils at multiple known positions using a well-calibrated triaxial magnetometer, and model these discreetly sampled fields using vector spherical harmonics (VSH) functions. We then localize and calibrate an OPM by minimizing the sum of squared errors between the model signals and the OPM responses to the coil fields. We show that by using homogeneous and first-order gradient fields, the OPM sensor parameters (gain, position, and orientation) can be obtained from a set of linear equations with pseudo-inverses of two matrices. The currents that should be applied to the coils for approximating these low-order field components can be determined based on the VSH models. Computationally simple initial estimates of the OPM sensor parameters follow. As a first test of the method, we placed a fluxgate magnetometer at multiple positions and estimated the RMS position, orientation, and gain errors of the method to be 1.0 mm, 0.2 degrees, and 0.8%, respectively. Lastly, we calibrated a 48-channel OPM array. The accuracy of the OPM calibration was tested by using the OPM array to localize magnetic dipoles in a phantom, which resulted in an average dipole position error of 3.3 mm. The results demonstrate the feasibility of using electromagnetic coils to calibrate and localize OPMs for MEG.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Optically pumped magnetometers enable a new level of biomagnetic measurements
    Sander, Tilmann
    Jodko-Wladzinska, Anna
    Hartwig, Stefan
    Bruehl, Ruediger
    Middelmann, Thomas
    ADVANCED OPTICAL TECHNOLOGIES, 2020, 9 (05) : 247 - 251
  • [32] Muscle Fatigue Revisited - Insights From Optically Pumped Magnetometers
    Sometti, Davide
    Semeia, Lorenzo
    Baek, Sangyeob
    Chen, Hui
    Righetti, Giulia
    Dax, Juergen
    Kronlage, Cornelius
    Kirchgaessner, Milena
    Romano, Alyssa
    Heilos, Johanna
    Staber, Deborah
    Oppold, Julia
    Middelmann, Thomas
    Braun, Christoph
    Broser, Philip
    Marquetand, Justus
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [33] A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers
    Boto, Elena
    Meyer, Sofie S.
    Shah, Vishal
    Alem, Orang
    Knappe, Svenja
    Kruger, Peter
    Fromhold, T. Mark
    Lim, Mark
    Glover, Paul M.
    Morris, Peter G.
    Bowtell, Richard
    Barnes, Gareth R.
    Brookes, Matthew J.
    NEUROIMAGE, 2017, 149 : 404 - 414
  • [34] Fetal magnetocardiography using optically pumped magnetometers: a more adaptable and less expensive alternative?
    Eswaran, Hari
    Escalona-Vargas, Diana
    Bolin, Elijah H.
    Wilson, James D.
    Lowery, Curtis L.
    PRENATAL DIAGNOSIS, 2017, 37 (02) : 193 - 196
  • [35] Distributed network of optically pumped magnetometers for space weather monitoring
    Mrozowski, Marcin S.
    Bell, Angus S.
    Griffin, Paul F.
    Hunter, Dominic
    Burt, David
    McGilligan, James P.
    Riis, Erling
    Beggan, Ciaran D.
    Ingleby, Stuart J.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] Optimizing longitudinal spin relaxation in miniaturized optically pumped magnetometers
    Mcwilliam, A. P.
    Dyer, S.
    Hunter, D.
    Mrozowski, M.
    Ingleby, S. J.
    Sharp, O.
    Burt, D. P.
    Griffin, P. F.
    Mcgilligan, J. P.
    Riis, E.
    PHYSICAL REVIEW APPLIED, 2024, 22 (06):
  • [37] Magnetic field imaging with microfabricated optically-pumped magnetometers
    Alem, Orang
    Mhaskar, Rahul
    Jimenez-Martinez, Ricardo
    Sheng, Dong
    LeBlanc, John
    Trahms, Lutz
    Sander, Tilmann
    Kitching, John
    Knappe, Svenja
    OPTICS EXPRESS, 2017, 25 (07): : 7849 - 7858
  • [38] A TUNABLE FIBER LASER FOR APPLICATION TO HELIUM OPTICALLY PUMPED MAGNETOMETERS
    LEGARREC, A
    LEGER, JM
    PUREUR, D
    DOUAY, M
    BERNAGE, P
    NIAY, P
    DELEVAQUE, E
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C4): : 695 - 698
  • [39] Optically pumped magnetometers reveal fasciculations non-invasively
    Marquetand, Justus
    Middelmann, Thomas
    Dax, Juergen
    Baek, Sangyeob
    Sometti, Davide
    Grimm, Alexander
    Lerche, Holger
    Martin, Pascal
    Kronlage, Cornelius
    Siegel, Markus
    Braun, Christoph
    Broser, Philip
    CLINICAL NEUROPHYSIOLOGY, 2021, 132 (10) : 2681 - 2684
  • [40] Feasibility study on on-board magnetoencephalography with optically pumped magnetometers
    Cao, Xinyu
    Fushimi, Motofumi
    Chikaki, Shinichi
    Kuwahata, Akihiro
    Sekino, Masaki
    AIP ADVANCES, 2024, 14 (01)