THE FAR-INFRARED CONDUCTIVITY OF OXIDE SUPERCONDUCTORS

被引:4
|
作者
Tanner, D. B. [1 ]
Quijada, M. A. [1 ]
Basov, D. N. [2 ]
Timusk, T. [2 ]
Kelley, R. J. [3 ]
Onellion, M. [3 ]
Rice, J. P. [4 ]
Ginsberg, D. M. [4 ]
Dabrowski, B. [5 ]
Cheong, S-W. [6 ]
Chou, F. C. [7 ,8 ]
Johnston, D. C. [7 ,8 ]
机构
[1] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
[2] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
[3] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[4] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[5] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[6] AT&T Bell Labs, Murray Hill, NJ 07974 USA
[7] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[8] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Superconductors; optical properties; high-T-c;
D O I
10.1080/00150199608216955
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A number of open questions remain about the infrared response of high-T-c superconductors. Although there is clear evidence for the formation of a superconducting condensate, there is no convincing data showing a superconducting gap absorption in the far infrared spectrum. Most of their spectral weight of the free carriers goes into the superconducting condensate in the superconducting state. Most cuprates are orthorhombic crystals, so there is anisotropy in their transport and optical properties. In YBa2Cu3O7-8-, the anisotropy of the London penetration depth shows that the chains contribute strongly to the superfluid. In Bi2Sr2CaCu2O8,. where chains are absent, there is still a definite anisotropy to the far-infrared absorption, with a finite absorption for E parallel to b down to similar to 20 meV. This anisotropy of the ab plane could be due either to anisotropy of the superconducting gap or to anisotropy of the midinfrared component to the conductivity.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 50 条
  • [21] Far-infrared reflectivity spectra of oxygen-deficient thallium superconductors
    Akimov, AI
    Karpei, AL
    Savchuk, GK
    INORGANIC MATERIALS, 1999, 35 (01) : 64 - 68
  • [22] Far-infrared radiation modulators using high-Tc superconductors
    Zhang, ZM
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1998, 120 (01): : 24 - 29
  • [23] The far-infrared in-plane conductivity of YBaCuO studied by ellipsometry
    Golnik, A
    Bernhard, C
    Humlicek, J
    Kläser, M
    Cardona, M
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1999, 215 (01): : 553 - 556
  • [24] THERMAL CONDUCTIVITY AND FAR-INFRARED ABSORPTION OF UO2
    ARING, K
    SIEVERS, AJ
    JOURNAL OF APPLIED PHYSICS, 1967, 38 (03) : 1496 - &
  • [25] FAR-INFRARED SPECTROSCOPY OF LIH USING A TUNABLE FAR-INFRARED SPECTROMETER
    MATSUSHIMA, F
    ODASHIMA, H
    WANG, DB
    TSUNEKAWA, S
    TAKAGI, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1994, 33 (1A): : 315 - 318
  • [26] Far-infrared spectral observations of the galaxy by the far-infrared absolute spectrophotometer
    Reach, WT
    UNSOLVED PROBLEMS OF THE MILKY WAY, 1996, (169): : 567 - 573
  • [27] Far-Infrared spectroscopy of LiH using a Tunable far-infrared spectrometer
    Matsushima, Fusakazu, 1600, Publ by JJAP, Minato-ku, Japan (33):
  • [28] FAR-INFRARED SPECTROGRAPH
    YOSHINAGA, H
    FUJITA, S
    MINAMI, S
    MITSUISHI, A
    OETJEN, RA
    YAMADA, Y
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1957, 47 (11) : 1045 - 1045
  • [29] FAR-INFRARED ELLIPSOMETER
    BARTH, KL
    KEILMANN, F
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (04): : 870 - 875
  • [30] FAR-INFRARED SPECTROSCOPY
    WOOD, JL
    QUARTERLY REVIEWS, 1963, 17 (04): : 362 - 381