Charpy impact energy data: a Markov chain Monte Carlo analysis

被引:6
|
作者
Stephens, DA
Smith, AFM
Moskovic, R
机构
[1] Imp. Coll. Sci., Technol. and Med., London
[2] Magnox Electric, Berkeley
[3] Department of Mathematics, Huxley Building, Imp. Coll. Sci., Technol. and Med., London, SW7 2BZ
关键词
Bayesian inference; Charpy impact energy; dose-damage relationship; Markov chain Monte Carlo method; neutron irradiation; BAYESIAN COMPUTATION;
D O I
10.1111/1467-9876.00085
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To assess radiation damage in steel for reactor pressure vessels in the nuclear industry, specimens are subjected to the Charpy test, which measures how much energy a specimen can absorb at a given test temperature before cracking. The resulting Charpy impact energy data are well represented by a three-parameter Burr curve as a function of test temperature, in which the parameters of the Burr curve are themselves dependent on irradiation dose. The resulting non-linear model function, combined with heteroscedastic random errors, gives rise to complicated likelihood surfaces that make conventional statistical techniques difficult to implement. To compute estimates of parameters of practical interest, Markov chain Monte Carlo sampling-based techniques are implemented. The approach is applied to 40 data sets from specimens subjected to no irradiation or one or two doses of irradiation. The influence of irradiation dose on the amount of energy absorbed is investigated.
引用
收藏
页码:477 / 492
页数:16
相关论文
共 50 条
  • [31] Markov Chain Monte Carlo in Practice
    Jones, Galin L.
    Qin, Qian
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2022, 9 : 557 - 578
  • [32] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    BERNOULLI, 2011, 17 (03) : 987 - 1014
  • [33] Structured Markov Chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 191 - 191
  • [34] Structured Markov chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) : 217 - 234
  • [35] Coreset Markov chain Monte Carlo
    Chen, Naitong
    Campbell, Trevor
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [36] Multilevel Markov Chain Monte Carlo
    Dodwell, T. J.
    Ketelsen, C.
    Scheichl, R.
    Teckentrup, A. L.
    SIAM REVIEW, 2019, 61 (03) : 509 - 545
  • [37] THE MARKOV CHAIN MONTE CARLO REVOLUTION
    Diaconis, Persi
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 179 - 205
  • [38] MARKOV CHAIN MONTE CARLO AND IRREVERSIBILITY
    Ottobre, Michela
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (03) : 267 - 292
  • [39] STEREOGRAPHIC MARKOV CHAIN MONTE CARLO
    Yang, Jun
    Latuszynski, Krzysztof
    Roberts, Gareth o.
    ANNALS OF STATISTICS, 2024, 52 (06): : 2692 - 2713
  • [40] Markov chain Monte Carlo analysis of Bianchi VIIh models
    Bridges, M.
    McEwen, J. D.
    Lasenby, A. N.
    Hobson, M. P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 377 (04) : 1473 - 1480