A Cluster-then-label Approach for Few-shot Learning with Application to Automatic Image Data Labeling

被引:3
|
作者
Wu, Renzhi [1 ]
Das, Nilaksh [1 ]
Chaba, Sanya [1 ]
Gandhi, Sakshi [1 ]
Chau, Duen Horng [1 ]
Chu, Xu [1 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
关键词
Few-shot learning; cluster-then-label; data labeling;
D O I
10.1145/3491232
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Few-shot learning (FSL) aims at learning to generalize from only a small number of labeled examples for a given target task. Most current state-of-the-art FSL methods typically have two limitations. First, they usually require access to a source dataset (in a similar domain) with abundant labeled examples, whichmay not always be possible due to privacy concerns and copyright issues. Second, they typically do not offer any estimation of the generalization error on the target FSL task, because the handful of labeled examples must be used for training and cannot spare a validation subset. In this article, we propose a cluster-then-label approach to perform few-shot learning. Our approach does not require access to the labeled source dataset and provides an estimation of generalization error. We show empirically, on four benchmark datasets, that our approach provides competitive predictive performance to state-of-the-art FSL approaches and our generalization error estimation is accurate. Finally, we explore the application of our proposed method to automatic image data labeling. We compare ourmethodwith existing automatic data labeling systems. The end-to-end performance of our method outperforms the state-of-the-art automatic data labeling system Snuba by 26% and is only 7% away from the fully supervised upper bound.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Few-shot image generation with reverse contrastive learning
    Gou, Yao
    Li, Min
    Zhang, Yusen
    He, Zhuzhen
    He, Yujie
    NEURAL NETWORKS, 2024, 169 : 154 - 164
  • [32] Ornament image retrieval using few-shot learning
    Sk Maidul Islam
    Subhankar Joardar
    Arif Ahmed Sekh
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [33] Only Image Cosine Embedding for Few-Shot Learning
    Gao, Songyi
    Shen, Weijie
    Liu, Zelin
    Zhu, An
    Yu, Yang
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 83 - 94
  • [34] Heterogeneous Few-Shot Learning for Hyperspectral Image Classification
    Wang, Yan
    Liu, Ming
    Yang, Yuexin
    Li, Zhaokui
    Du, Qian
    Chen, Yushi
    Li, Fei
    Yang, Haibo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [35] Few-shot learning for skin lesion image classification
    Xue-Jun Liu
    Kai-li Li
    Hai-ying Luan
    Wen-hui Wang
    Zhao-yu Chen
    Multimedia Tools and Applications, 2022, 81 : 4979 - 4990
  • [36] Deep Few-Shot Learning for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Yu, Anzhu
    Zhang, Pengqiang
    Wan, Gang
    Wang, Ruirui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (04): : 2290 - 2304
  • [37] ADAPTIVE ANCHOR LABEL PROPAGATION FOR TRANSDUCTIVE FEW-SHOT LEARNING
    Lazarou, Michalis
    Avrithis, Yannis
    Ren, Guangyu
    Stathaki, Tania
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 331 - 335
  • [38] Ornament image retrieval using few-shot learning
    Islam, Sk Maidul
    Joardar, Subhankar
    Sekh, Arif Ahmed
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [39] Few-shot learning for skin lesion image classification
    Liu, Xue-Jun
    Li, Kai-li
    Luan, Hai-ying
    Wang, Wen-hui
    Chen, Zhao-yu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (04) : 4979 - 4990
  • [40] Federated Learning and Optimization for Few-Shot Image Classification
    Zuo, Yi
    Chen, Zhenping
    Feng, Jing
    Fan, Yunhao
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 4649 - 4667