Thermal Characteristics of Paraffin/Expanded Perlite Composite for Latent Heat Thermal Energy Storage

被引:85
|
作者
Karaipekli, A. [1 ]
Sari, A. [1 ]
Kaygusuz, K. [2 ]
机构
[1] Gaziosmanpasa Univ, Dept Chem, TR-60240 Tokat, Turkey
[2] Karadeniz Tech Univ, Dept Chem, TR-61080 Trabzon, Turkey
关键词
expanded perlite; form-stable composite PCM; paraffin; thermal conductivity; PHASE-CHANGE MATERIALS; FATTY-ACIDS; PARAFFIN WAX; MIXTURES; PCMS;
D O I
10.1080/15567030701752768
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study focuses on the preparation and thermal properties of paraffin/expanded perlite composite as novel form-stable phase change material for latent heat thermal energy storage by vacuum impregnation method. The paraffin could be absorbed in pores of expanded perlite as much as 55 wt% without melted phase change material seepage from the composite and this mixture was described as form-stable composite phase change material. The melting and freezing temperatures and latent heats of form-stable composite phase change material were measured using differential scanning calorimetry analysis. The thermal cycling test indicated that the form-stable composite phase change material had good thermal reliability in terms of the changes in thermal properties after 5,000 thermal cycling. Thermal conductivity of the form-stable composite phase change material was increased by about 46% by adding 5 wt% expanded graphite. The results indicated that the prepared form-stable paraffin/expanded perlite/expanded graphite composite phase change material has a great potential for latent heat thermal energy storage systems solar passive heating purposes due to suitable phase change temperature, high latent heat capacity, good thermal reliability, and thermal conductivity.
引用
收藏
页码:814 / 823
页数:10
相关论文
共 50 条
  • [31] Successive melting and solidification of paraffin–alumina nanomaterial in a cavity as a latent heat thermal energy storage
    R. Yadollahi Farsani
    A. Raisi
    Amirhoushang Mahmoudi
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41
  • [32] Microstructure and thermal properties of a paraffin/expanded graphite phase-change composite for thermal storage
    Zhao, Jianguo
    Guo, Yong
    Feng, Feng
    Tong, Qinghua
    Qv, Wenshan
    Wang, Haiqing
    RENEWABLE ENERGY, 2011, 36 (05) : 1339 - 1342
  • [33] Development and characterization of composite phase change material: Thermal conductivity and latent heat thermal energy storage
    Trigui, Abdelwaheb
    Karkri, Mustapha
    Boudaya, Chokri
    Candau, Yves
    Ibos, Laurent
    COMPOSITES PART B-ENGINEERING, 2013, 49 : 22 - 35
  • [34] Thermal characteristics of paraffin wax for solar energy storage
    El-Kotb, M.
    El-Sharkawy, A.
    El Chazly, N. M.
    Khattab, N. M.
    El-Deeb, S.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2006, 28 (12) : 1113 - 1126
  • [35] Thermal performance of sensible and latent heat thermal energy storage systems
    Suresh, Charmala
    Saini, Rajeshwer Prasad
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (06) : 4743 - 4758
  • [36] Thermal enhancement of paraffin/hydrophobic expanded perlite granular phase change composite using graphene nanoplatelets
    Ramakrishnan, Sayanthan
    Wang, Xiaoming
    Sanjayan, Jay
    ENERGY AND BUILDINGS, 2018, 169 : 206 - 215
  • [37] Preparation and thermal properties of paraffin/expanded perlite composite as form-stable phase change material
    Sun, Dan
    Wang, Lijiu
    Li, Changming
    MATERIALS LETTERS, 2013, 108 : 247 - 249
  • [38] Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage
    Zhong, Yajuan
    Li, Sizhong
    Wei, Xinghai
    Liu, Zhanjun
    Guo, Quangui
    Shi, Jingli
    Liu, Lang
    CARBON, 2010, 48 (01) : 300 - 304
  • [39] Investigation of a latent heat thermal energy storage system
    Morcos, V.H., 1600, (07): : 2 - 3
  • [40] Latent heat thermal storage (LHTS) for energy sustainability
    Anisur, M.R.
    Kibria, M.A.
    Mahfuz, M.H.
    Metselaar, I.H.S.C.
    Saidur, R.
    Green Energy and Technology, 2015, 201 : 245 - 263