Experimental analysis of a 2 kWe LPG-based fuel processor for polymer electrolyte fuel cells

被引:23
|
作者
Cipitì, F [1 ]
Recupero, V [1 ]
Pino, L [1 ]
Vita, A [1 ]
Laganà, M [1 ]
机构
[1] Inst CNR ITAE, I-98126 Messina, Italy
关键词
fuel processor; autothermal reforming; hydrogen; PEFC; HYDROGEN; CONVERSION; OXIDATION; VEHICLES; PEFC;
D O I
10.1016/j.jpowsour.2006.02.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The paper describes the research activities carried out at the CNR Institute for Advanced Energy Technologies "Nicola Giordano", aimed to develop, assemble and test a hydrogen generator, named HYGen I, to integrate with a PEFC (polymer electrolyte fuel cell) for residential applications. The unit, capable to convert light hydrocarbons (methane, propane, LPG, butane), with a nominal hydrogen production of 2N m(3) h(-1) and a maximum hydrogen production of 5 N m(3) h(-1), can be considered the only prototype of this size in Italy. Preliminary experimental results, with a proprietary Pt/CeO2 catalyst for the autothermal reforming (ATR) and commercial catalysts for intermediate water gas shift (ITWS) and preferential oxidation (PROX) have been reported. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:914 / 920
页数:7
相关论文
共 50 条
  • [21] Numerical Modeling of Polymer Electrolyte Fuel Cells With Analytical and Experimental Validation
    Zhang, S.
    Reimer, U.
    Rahim, Y.
    Beale, S. B.
    Lehnert, W.
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2019, 16 (03)
  • [22] Experimental Determination of Water Transport in Polymer Electrolyte Membrane Fuel Cells
    Yau, Tak Cheung
    Sauriol, Pierre
    Bi, Xiaotao T.
    Stumper, Juergen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (09) : B1310 - B1320
  • [23] Analysis and Optimization of Transient Response of Polymer Electrolyte Fuel Cells
    Verma, A.
    Pitchumani, R.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2015, 12 (01):
  • [24] Computational Analysis of Dry Purge in Polymer Electrolyte Fuel Cells
    Roy, Arnab
    Pasaogullari, Ugur
    Renfro, Michael W.
    Cetegen, Baki M.
    PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 333 - 344
  • [25] Analysis on the freeze/thaw cycled polymer electrolyte fuel cells
    Park, Gu-Gon
    Lim, Soo-Jin
    Park, Jin-Soo
    Yim, Sung-Dae
    Park, Seok-Hee
    Yang, Tae-Hyun
    Yoon, Young-Gi
    Kim, Chang-Soo
    CURRENT APPLIED PHYSICS, 2010, 10 : S62 - S65
  • [26] Modeling polymer electrolyte fuel cells: A high precision analysis
    Zhang, S.
    Reimer, U.
    Beale, S. B.
    Lehnert, W.
    Stolten, D.
    APPLIED ENERGY, 2019, 233 : 1094 - 1103
  • [27] Cold start analysis of polymer electrolyte membrane fuel cells
    Jiao, Kui
    Li, Xianguo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) : 5077 - 5094
  • [28] A Comprehensive Analysis of the Overpotential Losses in Polymer Electrolyte Fuel Cells
    Fikry, Meriem
    Garcia-Padilla, Alvaro
    Herranz, Juan
    Khavlyuk, Pavel
    Eychmueller, Alexander
    Schmidt, Thomas J.
    ACS CATALYSIS, 2024, 14 (03) : 1903 - 1913
  • [29] APPLICATION OF CARBON NANOTUBES IN POLYMER ELECTROLYTE BASED FUEL CELLS
    Zhang, Wei
    Silva, S. Ravi P.
    REVIEWS ON ADVANCED MATERIALS SCIENCE, 2011, 29 (01) : 1 - 14
  • [30] Nanofiber-based polymer electrolyte membranes for fuel cells
    Liu, Ning
    Bi, Shuguang
    Zhang, Yi
    Ou, Ying
    Gong, Chunli
    Ran, Jianhua
    Chen, Yihuang
    Yang, Yingkui
    CARBON ENERGY, 2025,