Variable Selection in Nonparametric Classification Via Measurement Error Model Selection Likelihoods

被引:21
|
作者
Stefanski, L. A. [1 ]
Wu, Yichao [1 ]
White, Kyle [1 ]
机构
[1] N Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Attenuation; Bayes rule; Binary regression; Convolution; Discriminant analysis; Kernel discriminant analysis; LASSO; Linear regression; Maximum likelihood rule; Model selection; Ridge regression; DISCRIMINANT-ANALYSIS; REGRESSION;
D O I
10.1080/01621459.2013.858630
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using the relationships among ridge regression, LASSO estimation, and measurement error attenuation as motivation, a new measurement-error-model-based approach to variable selection is developed. After describing the approach in the familiar context of linear regression, we apply it to the problem of variable selection in nonparametric classification, resulting in a new kernel-based classifier with LASSO-like shrinkage and variable-selection properties. Finite-sample performance of the new classification method is studied via simulation and real data examples, and consistency of the method is studied theoretically. Supplementary materials for the article are available online.
引用
收藏
页码:574 / 589
页数:16
相关论文
共 50 条
  • [41] Classification model selection via bilevel programming
    Kunapuli, G.
    Bennett, K. P.
    Hu, Jing
    Pang, Jong-Shi
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (04): : 475 - 489
  • [42] Variable selection and error analyzing of grey model(1,n)
    Yin, Zimin
    Luo, Lixi
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 1999, 19 (11): : 81 - 83
  • [43] Variable Selection for Clustering and Classification
    Jeffrey L. Andrews
    Paul D. McNicholas
    Journal of Classification, 2014, 31 : 136 - 153
  • [44] Variable Selection for Clustering and Classification
    Andrews, Jeffrey L.
    McNicholas, Paul D.
    JOURNAL OF CLASSIFICATION, 2014, 31 (02) : 136 - 153
  • [45] Variable Selection for Kernel Classification
    Steel, S. J.
    Louw, N.
    Bierman, S.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2011, 40 (02) : 241 - 258
  • [46] Automatic Model Selection via Corrected Error Backpropagation
    Sekino, Masashi
    Nitta, Katsumi
    ADVANCES IN NEURO-INFORMATION PROCESSING, PT II, 2009, 5507 : 220 - 227
  • [47] Variable selection with error control: another look at stability selection
    Shah, Rajen D.
    Samworth, Richard J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (01) : 55 - 80
  • [48] Variable selection using penalised likelihoods for point patterns on a linear network
    Rakshit, Suman
    McSwiggan, Greg
    Nair, Gopalan
    Baddeley, Adrian
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (03) : 417 - 454
  • [49] Integrative variable selection via Bayesian model uncertainty
    Quintana, M. A.
    Conti, D. V.
    STATISTICS IN MEDICINE, 2013, 32 (28) : 4938 - 4953
  • [50] Variable selection for nonparametric additive Cox model with interval-censored data
    Tian, Tian
    Sun, Jianguo
    BIOMETRICAL JOURNAL, 2023, 65 (01)