Synthesis of colloidal PbSe nanoparticles using a microwave-assisted segmented flow reactor

被引:27
|
作者
Hostetler, Eric B. [1 ]
Kim, Ki-Joong [1 ]
Oleksak, Richard P. [1 ]
Fitzmorris, Robert C. [1 ]
Peterson, Daniel A. [2 ]
Chandran, Padmavathi [2 ]
Chang, Chih-Hung [1 ]
Paul, Brian K. [2 ]
Schut, David M. [3 ]
Herman, Gregory S. [1 ]
机构
[1] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA
[2] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA
[3] Univ Oregon, Voxtel Inc, Eugene, OR 97403 USA
关键词
PbSe; Nanoparticles; Colloidal processing; Microwave; Flow synthesis; EXTINCTION COEFFICIENT; LEAD SELENIDE; QUANTUM DOTS; NANOCRYSTALS;
D O I
10.1016/j.matlet.2014.04.089
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Colloidal lead selenide nanoparticles (PbSe NPs) were synthesized using a microwave-assisted continuous flow reactor. Rapid heating of precursors was performed in the microwave reaction zone to initiate nucleation and was followed by an oil bath growth zone. In this study we have evaluated the effect of the nucleation temperature on the PbSe NP size distributions, crystallographic structure, particle shape, and particle composition. The PbSe NP size could be varied from 11.2 to 13.9 nm by adjusting the microwave nucleation temperature between 124 and 159 degrees C. It was found that nucleation of Pb rich species occurred in the microwave reaction zone, while PbSe NPs form in the growth zone. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 50 条
  • [21] A Reactor for Microwave-Assisted Chemistry
    Korpas, Przemyslaw
    Borowska, Magdalena
    Celuch, Malgorzata
    Gryglewski, Daniel
    Jankowski, Krzysztof
    Kozlowski, Sebastian
    Wojtasiak, Wojciech
    IEEE MICROWAVE MAGAZINE, 2024, 25 (11) : 74 - 82
  • [22] Microwave-assisted flow synthesis of titania nanotubes
    Luo, Yingjian
    Delgado, Mar Calzado
    Yeung, King Lun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [23] Isothermal Reactor for Continuous Flow Microwave-Assisted Chemical Reaction
    Matsuzawa, Mitsuhiro
    Togashi, Shigenori
    Hasebe, Shinji
    JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2012, 7 (01): : 58 - 74
  • [24] Microwave-assisted Suzuki reactions in a continuous flow capillary reactor
    Ping, H
    Haswell, SJ
    Fletcher, PDI
    APPLIED CATALYSIS A-GENERAL, 2004, 274 (1-2) : 111 - 114
  • [25] Tracking method for the microwave-assisted synthesis of silver nanoparticles
    Patrascu, M.
    Calinescu, I.
    Boscornea, C.
    Lacatusu, I.
    Martin, D.
    Ighigeanu, D.
    Vasile, E.
    Radoiu, M.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2011, 13 (5-6): : 666 - 671
  • [26] Microwave-assisted polyol process for synthesis of ni nanoparticles
    Li, DS
    Komarneni, S
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (05) : 1510 - 1517
  • [27] Fast Microwave-Assisted Synthesis of Uniform Magnetic Nanoparticles
    Kozakova, Z.
    Bazant, P.
    Machovsky, M.
    Babayan, V.
    Kuritka, I.
    ACTA PHYSICA POLONICA A, 2010, 118 (05) : 948 - 949
  • [28] Microwave-assisted synthesis and characterization of tin oxide nanoparticles
    Krishnakumar, T.
    Pinna, Nicola
    Kumari, K. Prasanna
    Perumal, K.
    Jayaprakash, R.
    MATERIALS LETTERS, 2008, 62 (19) : 3437 - 3440
  • [29] Microwave-Assisted Synthesis of Selenium Nanoparticles: Bioactivity Insights
    Tisli, Buesra
    Nejati, Omid
    Torkay, Gulsah
    Giray, Betul
    Bal-Ozturk, Ayca
    Bakirdere, Sezgin
    CHEMISTRYSELECT, 2024, 9 (43):
  • [30] Microwave-Assisted Synthesis of Ultrasmall Zinc Oxide Nanoparticles
    Saloga, Patrick E. J.
    Thuenemann, Andreas F.
    LANGMUIR, 2019, 35 (38) : 12469 - 12482