Wire-arc additive manufacturing of a novel high-performance Al-Zn-Mg-Cu alloy: Processing, characterization and feasibility demonstration

被引:91
|
作者
Klein, Thomas [1 ]
Schnall, Martin [1 ]
Gomes, Bianca [2 ]
Warczok, Piotr [3 ]
Fleischhacker, Dominik [4 ]
Morais, Paulo J. [2 ]
机构
[1] Austrian Inst Technol, LKR Light Met Technol Ranshofen, A-5282 Ranshofen, Austria
[2] Inst Soldadura & Qualidade, P-2740120 Porto Salvo, Portugal
[3] MatCalc Engn GmbH, A-1060 Vienna, Austria
[4] SinusPro GmbH, A-8010 Graz, Austria
关键词
Wire-arc additive manufacturing; High-performance aluminum alloys; Heat treatment; Microstructure evolution; Mechanical properties;
D O I
10.1016/j.addma.2020.101663
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire-arc additive manufacturing (WAAM) is a feasible technology for manufacturing of metallic components of medium complexity with a high deposition rate. Manufacturing of aluminum alloys for e.g. structural components of the aero plane fuselage by this technology has been impeded by the unavailability of high-performance alloys with good processability and low susceptibility to hot cracking. Therefore, a novel alloy system has been developed based on the Al-Zn-Mg-Cu system and successfully processed by WAAM without the occurrence of any hot cracks. Heat treatment strategies were developed allowing for optimum mechanical properties. A homogeneous grain structure was observed with few elongated grains. Upon heat treatment, the formation of T phases was verified with a precipitate size in the range of similar to 10 nm. These are responsible for the observed pronounced age-hardening response of this alloy. An isotropic proof stress of up to similar to 340 MPa and a fracture strain of up to similar to 11% are evidence of the high quality of the WAAM deposited material allowing for an extended use of these alloys for advanced applications. Finally, the applicability and processability of the alloy was proven by fabrication of a motorcycle piston.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] High-resolution characterization of the precipitation behavior of an Al-Zn-Mg-Cu alloy
    Li, Yi-Yun
    Kovarik, Libor
    Phillips, Patrick J.
    Hsu, Yung-Fu
    Wang, Wen-Hsiung
    Mills, Michael J.
    PHILOSOPHICAL MAGAZINE LETTERS, 2012, 92 (04) : 166 - 178
  • [42] Microstructural and mechanical property evolution of TiC/Ti-reinforced Al-Zn-Mg-Cu alloy through wire arc additive manufacturing under intrinsic heat treatment
    Xu, Shiwei
    Lei, Da
    Yang, Xiaoyi
    Lu, Xin
    Zhou, Liexing
    Chen, Jiqiang
    Li, Mengnie Victor
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 926
  • [43] Formation mechanism of Al-Zn-Mg-Cu alloy fabricated by laser-arc hybrid additive manufacturing: Microstructure evaluation and mechanical properties
    Liu, Dehua
    Wu, Dongjiang
    Wang, Ruzheng
    Shi, Jingan
    Niu, Fangyong
    Ma, Guangyi
    ADDITIVE MANUFACTURING, 2022, 50
  • [44] Characterization of the Isothermal Precipitation Kinetics of an Al-Zn-Mg-Cu Alloy
    Jiang, Fulin
    Zurob, Hatem S.
    Purdy, Gary R.
    Wang, Xiang
    Zhang, Hui
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (10): : 5157 - 5168
  • [45] A comparative study on microstructure and mechanical properties of wire-arc directed energy deposited Al-Zn-Mg-Cu alloy based on the cold metal transfer technology
    Wang, Yuwen
    Chen, Ji
    Chen, Maoai
    Su, Hao
    Zong, Ran
    Wu, Dongsheng
    Komen, Hisaya
    Tanaka, Manabu
    Wu, Chuansong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 397 - 415
  • [46] Characterization of the Isothermal Precipitation Kinetics of an Al-Zn-Mg-Cu Alloy
    Fulin Jiang
    Hatem S. Zurob
    Gary R. Purdy
    Xiang Wang
    Hui Zhang
    Metallurgical and Materials Transactions A, 2018, 49 : 5157 - 5168
  • [47] Enhanced wear and corrosion resistance of wire-arc additive manufactured Al-Cu alloy by friction stir processing
    Ren, Guochun
    Zheng, Yang
    Zhong, Pu
    Wang, Tianqi
    Li, Liangyu
    VACUUM, 2025, 233
  • [48] Wire-arc additive manufactured Al-Cu alloy: microstructure, mechanical properties and their anisotropy
    Miao, Jiale
    Chen, Jiqiang
    Ren, Jieke
    Luo, Zhi
    Fan, Zhenglin
    Zhou, Zixiang
    Xing, Ting
    Guan, Renguo
    MATERIALS SCIENCE AND TECHNOLOGY, 2023, 39 (15) : 2124 - 2134
  • [49] Hot deformation characterization of a novel Al-Zn-Mg-Cu aluminum alloy through processing map and microstructure evolution
    Li Hui
    Zhu Zhen-feng
    Yan Zhao-hui
    MATERIALS RESEARCH EXPRESS, 2018, 5 (06):
  • [50] Enhanced strength-plasticity of 2319 Al-Cu alloy formed by hybrid interlayer friction stir processing and wire-arc additive manufacturing
    Yuan, Tao
    Xu, Daqing
    Jiang, Xiaoqing
    Zhao, Pengjing
    Chen, Shujun
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 321