Identification of hydraulic parameters for unsaturated soils using particle swarm optimization

被引:0
|
作者
Zhang, Y. [1 ]
Augarde, C. E. [1 ]
Gallipoli, D. [2 ]
机构
[1] Univ Durham, Durham, England
[2] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland
关键词
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Determination of material parameters for unsaturated soils from laboratory or field tests can be difficult due to the large number of parameters required for many constitutive models. With increasing computing power readily available, parameter search using modem optimisation procedures is now feasible. In this study the identification of hydraulic parameters from the back analysis of a transient infiltration problem is illustrated. Particle Swarm Optimization (PSO) is utilized in the search for the optimal set of parameter values. Two approaches are described: one where a limited set of the parameters is sought and the second where the whole set is sought. For the latter it is shown that a multi-step range contracting method is appropriate and leads to a computationally economic solution.
引用
收藏
页码:765 / +
页数:2
相关论文
共 50 条
  • [21] Parameter identification for elasto-plastic modelling of unsaturated soils from pressuremeter tests by parallel modified particle swarm optimization
    Zhang, Youliang
    Gallipoli, Domenico
    Augarde, Charles
    COMPUTERS AND GEOTECHNICS, 2013, 48 : 293 - 303
  • [22] Parameters Optimization of Deep Learning Models using Particle Swarm Optimization
    Qolomany, Basheer
    Maabreh, Majdi
    Al-Fuqaha, Ala
    Gupta, Ajay
    Benhaddou, Driss
    2017 13TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2017, : 1285 - 1290
  • [23] Optimization of Wind Direction Distribution Parameters Using Particle Swarm Optimization
    Heckenbergerova, Jana
    Musilek, Petr
    Kroemer, Pavel
    AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT, AECIA 2014, 2015, 334 : 15 - 26
  • [24] Solving numerical equations of hydraulic problems using Particle Swarm Optimization
    Krohling, RA
    Knidel, H
    Shi, YH
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 1688 - 1690
  • [25] Identification of Rotor Unbalanced Parameters Based on Chaos Particle Swarm Optimization
    Yun X.L.
    Pang Z.
    Zhang Y.
    Jiang G.
    Liu B.
    Mei C.
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2022, 42 (05): : 898 - 904
  • [26] Parameters identification for ship motion model based on particle swarm optimization
    Chen, Yongbing
    Song, Yexin
    Chen, Mianyun
    KYBERNETES, 2010, 39 (06) : 871 - 880
  • [27] Parameters identification of magnetorheological damper based on particle swarm optimization algorithm
    Guo, Qianqian
    Yang, Xiaolong
    Li, Kangjun
    Li, Decai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 143
  • [28] Spectrum-based modal parameters identification with Particle Swarm Optimization
    Galewski, Marek A.
    MECHATRONICS, 2016, 37 : 21 - 32
  • [29] Parameters identification of servo system with resonance based on particle swarm optimization
    Xiong, Yan
    Li, Yesong
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42 (12): : 111 - 115
  • [30] Conductivity Polynomial Model Parameters identification based on Particle Swarm Optimization
    Messai, Tlili
    Chammam, Abdeljelil
    Sellami, Anis
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2013, 15 (04): : 58 - 65