Diagnostic sea ice predictability in the pan-Arctic and US Arctic regional seas

被引:15
|
作者
Cheng, Wei [1 ,2 ]
Blanchard-Wrigglesworth, Edward [3 ]
Bitz, Cecilia M. [3 ]
Ladd, Carol [2 ]
Stabeno, Phyllis J. [2 ]
机构
[1] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA
[2] NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way Ne, Seattle, WA 98115 USA
[3] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
关键词
EASTERN BERING-SEA; THICKNESS; CLIMATE; OCEAN; VARIABILITY; REEMERGENCE; TRENDS; MODEL; GCM;
D O I
10.1002/2016GL070735
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study assesses sea ice predictability in the pan-Arctic and U.S. Arctic regional (Bering, Chukchi, and Beaufort) seas with a purpose of understanding regional differences from the pan-Arctic perspective and how predictability might change under changing climate. Lagged correlation is derived using existing output from the Community Earth System Model Large Ensemble (CESM-LE), Pan-Arctic Ice-Ocean Modeling and Assimilation System, and NOAA Coupled Forecast System Reanalysis models. While qualitatively similar, quantitative differences exist in Arctic ice area lagged correlation in models with or without data assimilation. On regional scales, modeled ice area lagged correlations are strongly location and season dependent. A robust feature in the CESM-LE is that the pan-Arctic melt-to-freeze season ice area memory intensifies, whereas the freeze-to-melt season memory weakens as climate warms, but there are across-region variations in the sea ice predictability changes with changing climate.
引用
收藏
页码:11688 / 11696
页数:9
相关论文
共 50 条
  • [21] Pan-Arctic melt pond fraction trend, variability, and contribution to sea ice changes
    Feng, Jiajun
    Zhang, Yuanzhi
    Cheng, Qiuming
    Tsou, Jin Yeu
    GLOBAL AND PLANETARY CHANGE, 2022, 217
  • [22] Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice
    Tripati, Aradhna
    Darby, Dennis
    NATURE COMMUNICATIONS, 2018, 9
  • [23] Evidence for ephemeral middle Eocene to early Oligocene Greenland glacial ice and pan-Arctic sea ice
    Aradhna Tripati
    Dennis Darby
    Nature Communications, 9
  • [24] Pan-Arctic distributions of continental runoff in the Arctic Ocean
    Fichot, Cedric G.
    Kaiser, Karl
    Hooker, Stanford B.
    Amon, Rainer M. W.
    Babin, Marcel
    Belanger, Simon
    Walker, Sally A.
    Benner, Ronald
    SCIENTIFIC REPORTS, 2013, 3
  • [25] Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas
    Piepenburg D.
    Archambault P.
    Ambrose Jr. W.G.
    Blanchard A.L.
    Bluhm B.A.
    Carroll M.L.
    Conlan K.E.
    Cusson M.
    Feder H.M.
    Grebmeier J.M.
    Jewett S.C.
    Lévesque M.
    Petryashev V.V.
    Sejr M.K.
    Sirenko B.I.
    Włodarska-Kowalczuk M.
    Marine Biodiversity, 2011, 41 (1) : 51 - 70
  • [26] Pan-Arctic distributions of continental runoff in the Arctic Ocean
    Cédric G. Fichot
    Karl Kaiser
    Stanford B. Hooker
    Rainer M. W. Amon
    Marcel Babin
    Simon Bélanger
    Sally A. Walker
    Ronald Benner
    Scientific Reports, 3
  • [27] Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry
    Dammann, Dyre O.
    Eriksson, Leif E. B.
    Mahoney, Andrew R.
    Eicken, Hajo
    Meyer, Franz J.
    CRYOSPHERE, 2019, 13 (02): : 557 - 577
  • [28] Prediction of Pan-Arctic Sea Ice Using Attention-Based LSTM Neural Networks
    Wei, Jianfen
    Hang, Renlong
    Luo, Jing-Jia
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [29] Satellites reveal different stories of marine heatwaves in the sea-ice-covered pan-Arctic
    Zhang, Xuewei
    Zhao, Ning
    Dai, Zhijun
    Han, Zhen
    COMMUNICATIONS EARTH & ENVIRONMENT, 2025, 6 (01):
  • [30] Sea ice floe size: its impact on pan-Arctic and local ice mass and required model complexity
    Bateson, Adam William
    Feltham, Daniel L.
    Schroder, David
    Wang, Yanan
    Hwang, Byongjun
    Ridley, Jeff K.
    Aksenov, Yevgeny
    CRYOSPHERE, 2022, 16 (06): : 2565 - 2593