Diagnostic sea ice predictability in the pan-Arctic and US Arctic regional seas

被引:15
|
作者
Cheng, Wei [1 ,2 ]
Blanchard-Wrigglesworth, Edward [3 ]
Bitz, Cecilia M. [3 ]
Ladd, Carol [2 ]
Stabeno, Phyllis J. [2 ]
机构
[1] Univ Washington, Joint Inst Study Atmosphere & Oceans, Seattle, WA 98195 USA
[2] NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way Ne, Seattle, WA 98115 USA
[3] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA
关键词
EASTERN BERING-SEA; THICKNESS; CLIMATE; OCEAN; VARIABILITY; REEMERGENCE; TRENDS; MODEL; GCM;
D O I
10.1002/2016GL070735
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This study assesses sea ice predictability in the pan-Arctic and U.S. Arctic regional (Bering, Chukchi, and Beaufort) seas with a purpose of understanding regional differences from the pan-Arctic perspective and how predictability might change under changing climate. Lagged correlation is derived using existing output from the Community Earth System Model Large Ensemble (CESM-LE), Pan-Arctic Ice-Ocean Modeling and Assimilation System, and NOAA Coupled Forecast System Reanalysis models. While qualitatively similar, quantitative differences exist in Arctic ice area lagged correlation in models with or without data assimilation. On regional scales, modeled ice area lagged correlations are strongly location and season dependent. A robust feature in the CESM-LE is that the pan-Arctic melt-to-freeze season ice area memory intensifies, whereas the freeze-to-melt season memory weakens as climate warms, but there are across-region variations in the sea ice predictability changes with changing climate.
引用
收藏
页码:11688 / 11696
页数:9
相关论文
共 50 条
  • [1] Pan-Arctic and Regional Sea Ice Predictability: Initialization Month Dependence
    Day, J. J.
    Tietsche, S.
    Hawkins, E.
    JOURNAL OF CLIMATE, 2014, 27 (12) : 4371 - 4390
  • [2] Simulated Atmospheric Response to Regional and Pan-Arctic Sea Ice Loss
    Screen, James A.
    JOURNAL OF CLIMATE, 2017, 30 (11) : 3945 - 3962
  • [3] Predicting regional and pan-Arctic sea ice anomalies with kernel analog forecasting
    Comeau, Darin
    Giannakis, Dimitrios
    Zhao, Zhizhen
    Majda, Andrew J.
    CLIMATE DYNAMICS, 2019, 52 (9-10) : 5507 - 5525
  • [4] Improved Seasonal Forecast Skill of Pan-Arctic and Regional Sea Ice Extent in
    Martin, Joseph
    Monahan, Adam
    Sigmond, Michael
    WEATHER AND FORECASTING, 2023, 38 (10) : 2029 - 2056
  • [5] Predicting regional and pan-Arctic sea ice anomalies with kernel analog forecasting
    Darin Comeau
    Dimitrios Giannakis
    Zhizhen Zhao
    Andrew J. Majda
    Climate Dynamics, 2019, 52 : 5507 - 5525
  • [6] Sea ice meiofauna distribution on local to pan-Arctic scales
    Bluhm, Bodil A.
    Hop, Haakon
    Vihtakari, Mikko
    Gradinger, Rolf
    Iken, Katrin
    Melnikov, Igor A.
    Soreide, Janne E.
    ECOLOGY AND EVOLUTION, 2018, 8 (04): : 2350 - 2364
  • [7] Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales
    Blanchard-Wrigglesworth, E.
    Barthelemy, A.
    Chevallier, M.
    Cullather, R.
    Fuckar, N.
    Massonnet, F.
    Posey, P.
    Wang, W.
    Zhang, J.
    Ardilouze, C.
    Bitz, C. M.
    Vernieres, G.
    Wallcraft, A.
    Wang, M.
    CLIMATE DYNAMICS, 2017, 49 (04) : 1399 - 1410
  • [8] Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales
    E. Blanchard-Wrigglesworth
    A. Barthélemy
    M. Chevallier
    R. Cullather
    N. Fučkar
    F. Massonnet
    P. Posey
    W. Wang
    J. Zhang
    C. Ardilouze
    C. M. Bitz
    G. Vernieres
    A. Wallcraft
    M. Wang
    Climate Dynamics, 2017, 49 : 1399 - 1410
  • [9] Ice-Associated Amphipods in a Pan-Arctic Scenario of Declining Sea Ice
    Hop, Haakon
    Vihtakari, Mikko
    Bluhm, Bodil A.
    Daase, Malin
    Gradinger, Rolf
    Melnikov, Igor A.
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [10] An assessment of regional sea ice predictability in the Arctic ocean
    Rubén Cruz-García
    Virginie Guemas
    Matthieu Chevallier
    François Massonnet
    Climate Dynamics, 2019, 53 : 427 - 440