Complex-valued Bayesian parameter estimation via Markov chain Monte Carlo

被引:3
|
作者
Liu, Ying [1 ]
Li, Chunguang [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian analysis; Complex-valued; Markov chain Monte Carlo; Parameter estimation; Metropolis-Hastings sampling; Differential evolution; MODEL; MCMC;
D O I
10.1016/j.ins.2015.08.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study of parameter estimation of a specified model has a long history. In statistics, Bayesian analysis via Markov chain Monte Carlo (MCMC) sampling is an efficient way for parameter estimation. However, the existing MCMC sampling is only performed in the real parameter space. In some situation, complex-valued parametric modeling is more preferable as complex representation brings economies and insights that would not be achieved by real-valued representation. Therefore, to estimate complex-valued parameters, it is more convenient and elegant to perform the MCMC sampling in the complex parameter space. In this paper, firstly, based on the assumption that the observation signal is proper, two complex MCMC algorithms using the Metropolis-Hastings sampling and the differential evolution are proposed, in which the probability density functions (pdfs) in Bayesian estimation are characterized by the usual Hermitian covariance matrices. Secondly, to improve the performance for the case that the observation signal is improper, two augmented complex MCMC algorithms are developed, where the pdfs are computed by the augmented complex statistics. Both theoretical studies and numerical simulations are presented to show the effectiveness of the proposed algorithms in complex-valued parameter estimation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:334 / 349
页数:16
相关论文
共 50 条
  • [11] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [12] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    B Mathew
    A M Bauer
    P Koistinen
    T C Reetz
    J Léon
    M J Sillanpää
    Heredity, 2012, 109 : 235 - 245
  • [13] Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters
    Mathew, B.
    Bauer, A. M.
    Koistinen, P.
    Reetz, T. C.
    Leon, J.
    Sillanpaa, M. J.
    HEREDITY, 2012, 109 (04) : 235 - 245
  • [14] An Improved Markov Chain Monte Carlo Scheme for Parameter Estimation Analysis
    Liu, Fang
    Pan, Hao
    Jiang, Desheng
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 702 - +
  • [15] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [16] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25
  • [17] Seismic parameter estimation using Markov Chain Monte Carlo Method
    Zhang, Guang-Zhi
    Wang, Dan-Yang
    Yin, Xing-Yao
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2011, 46 (04): : 605 - 609
  • [18] Bayesian phylogenetic inference via Markov chain Monte Carlo methods
    Mau, B
    Newton, MA
    Larget, B
    BIOMETRICS, 1999, 55 (01) : 1 - 12
  • [19] Bayesian Mixture Modelling in Geochronology via Markov Chain Monte Carlo
    Ajay Jasra
    David A. Stephens
    Kerry Gallagher
    Christopher C. Holmes
    Mathematical Geology, 2006, 38 : 269 - 300
  • [20] Bayesian Trend Filtering via Proximal Markov Chain Monte Carlo
    Heng, Qiang
    Zhou, Hua
    Chi, Eric C.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (03) : 938 - 949