Comparative Study of CNN and RNN for Deep Learning Based Intrusion Detection System

被引:13
|
作者
Cui, Jianjing [1 ]
Long, Jun [1 ]
Min, Erxue [1 ]
Liu, Qiang [1 ]
Li, Qian [2 ]
机构
[1] Natl Univ Def Technol, Dept Comp Sci, Changsha 410005, Hunan, Peoples R China
[2] Univ Technol Sydney, Fac Engn & IT, Sydney, NSW 2007, Australia
来源
基金
中国国家自然科学基金;
关键词
Intrusion detection system; Deep neural networks; Convolutional neural network; Recurrent neural network;
D O I
10.1007/978-3-030-00018-9_15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Intrusion detection system plays an important role in ensuring information security, and the key technology is to accurately identify various attacks in the network. Due to huge increase in network traffic and different types of attacks, accurately classifying the malicious and legitimate network traffic is time consuming and computational intensive. Recently, more and more researchers applied deep neural networks (DNNs) to solve intrusion detection problems. Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), the two main types of DNN architectures, are widely explored to enhance the performance of intrusion detection system. In this paper, we made a systematic comparison of CNN and RNN on the deep learning based intrusion detection systems, aiming to give basic guidance for DNN selection.
引用
收藏
页码:159 / 170
页数:12
相关论文
共 50 条
  • [21] IDSDL: a sensitive intrusion detection system based on deep learning
    Hu, Yanjun
    Bai, Fan
    Yang, Xuemiao
    Liu, Yafeng
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2021, 2021 (01)
  • [22] A novel scalable intrusion detection system based on deep learning
    Soosan Naderi Mighan
    Mohsen Kahani
    International Journal of Information Security, 2021, 20 : 387 - 403
  • [23] Intrusion Detection System Based on RNN Classifier for Feature Reduction
    Bhushan Deore
    Surendra Bhosale
    SN Computer Science, 2022, 3 (2)
  • [24] Comparative Analysis of Intrusion Detection System Using Machine Learning and Deep Learning Algorithms
    Note J.
    Ali M.
    Annals of Emerging Technologies in Computing, 2022, 6 (03) : 19 - 36
  • [25] A Transfer Learning and Optimized CNN Based Intrusion Detection System for Internet of Vehicles
    Yang, Li
    Shami, Abdallah
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2774 - 2779
  • [26] Comparative Study of Machine Learning Algorithm for Intrusion Detection System
    Sravani, K.
    Srinivasu, P.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2013, 2014, 247 : 189 - 196
  • [27] A Comparative Study of Deep Learning-Based Vulnerability Detection System
    Li, Zhen
    Zou, Deqing
    Tang, Jing
    Zhang, Zhihao
    Sun, Mingqian
    Jin, Hai
    IEEE ACCESS, 2019, 7 : 103184 - 103197
  • [28] Comparative Analysis of CNN and RNN for Voice Pathology Detection
    Syed, Sidra Abid
    Rashid, Munaf
    Hussain, Samreen
    Zahid, Hira
    BIOMED RESEARCH INTERNATIONAL, 2021, 2021
  • [29] CNN and RNN-based Deep Learning Methods for Digital Signal Demodulation
    Wu, Tian
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019), 2019, : 122 - 127
  • [30] A Novel Network Intrusion Detection System Based on CNN
    Chen, Lin
    Kuang, Xiaoyun
    Xu, Aidong
    Suo, Siliang
    Yang, Yiwei
    2020 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA (CBD 2020), 2020, : 243 - 247