Continuous quaternion fourier and wavelet transforms

被引:25
|
作者
Bahri, Mawardi [1 ]
Ashino, Ryuichi [2 ]
Vaillancourt, Remi [3 ]
机构
[1] Univ Hasanuddin, Dept Math, Makassar 90245, Indonesia
[2] Osaka Kyoiku Univ, Div Math Sci, Osaka 5828582, Japan
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quaternion-valued function; quaternion algebra; quaternion Fourier transform; FIELDS;
D O I
10.1142/S0219691314600030
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A two-dimensional (2D) quaternion Fourier transform (QFT) defined with the kernel e(-i+j+k/root 3w.x) is proposed. Some fundamental properties, such as convolution, Plancherel and vector differential theorems, are established. The heat equation in quaternion algebra is presented as an example of the application of the QFT to partial differential equations. The wavelet transform is extended to quaternion algebra using the kernel of the QFT.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] An uncertainty relation for continuous wavelet transforms
    Flandrin, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (06): : 485 - 488
  • [32] Composition of the Continuous Fractional Wavelet Transforms
    Prasad, Akhilesh
    Kumar, Praveen
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2016, 39 (02): : 115 - 120
  • [33] PARALLEL DISCRETE AND CONTINUOUS WAVELET TRANSFORMS
    CAULFIELD, HJ
    SZU, HH
    OPTICAL ENGINEERING, 1992, 31 (09) : 1835 - 1839
  • [34] EFFICIENT APPROXIMATION OF CONTINUOUS WAVELET TRANSFORMS
    JONES, DL
    BARANIUK, RG
    ELECTRONICS LETTERS, 1991, 27 (09) : 748 - 750
  • [35] Continuous and discrete Bessel wavelet transforms
    Pathak, RS
    Dixit, MM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 160 (1-2) : 241 - 250
  • [36] Composition of the Continuous Fractional Wavelet Transforms
    Akhilesh Prasad
    Praveen Kumar
    National Academy Science Letters, 2016, 39 : 115 - 120
  • [37] Discretization of quaternionic continuous wavelet transforms
    Hemmat, A. Askari
    Thirulogasanthar, K.
    Krzyzak, A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 117 : 36 - 49
  • [38] On discrete and continuous nonlinear Fourier transforms
    Saksida, Pavle
    XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [39] FRACTIONAL FOURIER-TRANSFORMS, WAVELET TRANSFORMS, AND ADAPTIVE NEURAL NETWORKS
    LEE, SY
    SZU, HH
    OPTICAL ENGINEERING, 1994, 33 (07) : 2326 - 2330
  • [40] Tunable continuous wavelet and frame transforms
    Scholl, JF
    Barker, DL
    Schmitt, HA
    Langan, JD
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 922 - 933