Memristor based object detection using neural network

被引:5
|
作者
Ravikumar, Ki [1 ,2 ]
Sukumar, R. [1 ]
机构
[1] Jain Univ, Dept E&CE, Bangalore, Karnataka, India
[2] Jain Inst Technol, Dept E&CE, Davangere, Karnataka, India
来源
HIGH-CONFIDENCE COMPUTING | 2022年 / 2卷 / 04期
关键词
Memristor; Deep learning; Object detection; CIFAR-10;
D O I
10.1016/j.hcc.2022.100085
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing growth of AI, big data analytics, cloud computing, and Internet of Things applications, developing memristor devices and related hardware systems to compute the deep learning application needs extensive data calculations with low power consumption and lesser chip area. Deep learning model is one of the AI methods which is gaining importance in object detection, natural language processing, and pattern recognition. A large amount of data handling is essential for driving the deep learning model with less power consumption. To address these issues, the paper proposed the Memristor-based object detection on the CIFAR-10 dataset and achieved an accuracy of 85 percent. The memtorch package in python is employed to predict the objects for implementation.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Object Grasping Detection Based on Residual Convolutional Neural Network
    吴迪
    吴乃龙
    石红瑞
    JournalofDonghuaUniversity(EnglishEdition), 2022, 39 (04) : 345 - 352
  • [22] Probabilistic Model of Object Detection Based on Convolutional Neural Network
    Li, Fang-Qi
    Ren, Xu-Die
    Guo, Hao-Nan
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2059 - 2066
  • [23] Object Detection Based on Binocular Vision with Convolutional Neural Network
    Luo, Zekun
    Wu, Xia
    Zou, Qingquan
    Xiao, Xiao
    2018 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MACHINE LEARNING (SPML 2018), 2018, : 60 - 65
  • [24] Convolutional Neural Network Based Object Detection for Additive Manufacturing
    Lemos, Cezar B.
    Farias, Paulo C. M. A.
    Simas Filho, Eduardo E.
    Conceicao, Andre G. S.
    2019 19TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2019, : 420 - 425
  • [25] Embedded Object Detection System Based on Deep Neural Network
    Luo, Hanwu
    Li, Wenzhen
    Luo, Wang
    Li, Fang
    Chen, Jun
    Xia, Yuan
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 383 - 386
  • [26] Object Classification Using Substance Based Neural Network
    Sengottuvelan, P.
    Arulmurugan, R.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [27] Chimera in a network of memristor-based Hopfield neural network
    Parastesh, Fatemeh
    Jafari, Sajad
    Azarnoush, Hamed
    Hatef, Boshra
    Namazi, Hamidreza
    Dudkowski, Dawid
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (10): : 2023 - 2033
  • [28] Chimera in a network of memristor-based Hopfield neural network
    Fatemeh Parastesh
    Sajad Jafari
    Hamed Azarnoush
    Boshra Hatef
    Hamidreza Namazi
    Dawid Dudkowski
    The European Physical Journal Special Topics, 2019, 228 : 2023 - 2033
  • [29] Efficient object detection using convolutional neural network-based hierarchical feature modeling
    Byungjae Lee
    Enkhbayar Erdenee
    Songguo Jin
    Phill Kyu Rhee
    Signal, Image and Video Processing, 2016, 10 : 1503 - 1510
  • [30] Foreign Object Debris Detection on Airfield Pavement Using Region Based Convolution Neural Network
    Cao, Xiaoguang
    Gong, Guoping
    Liu, Miaoming
    Qi, Jun
    2016 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2016, : 751 - 756