Permanence for the Michaelis-Menten type discrete three-species ratio-dependent food chain model with delay

被引:10
|
作者
Dai, Binxiang [1 ]
Zhang, Na
Zou, Jiezhong
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
ratio-dependent; permanence; discrete predator-prey model;
D O I
10.1016/j.jmaa.2005.12.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A discrete three trophic level food chain model with ratio-dependent Michaelis-Menten type functional response is investigated. It is shown that under some appropriate conditions the system is permanent. The results indicate that, to make the species coexist in the long run, it is a surefire strategy to keep the death rate of the predator and top predator rather small and the intrinsic growth rate of the prey relatively large. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:728 / 738
页数:11
相关论文
共 50 条
  • [21] Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system
    Sze-Bi Hsu
    Tzy-Wei Hwang
    Yang Kuang
    Journal of Mathematical Biology, 2001, 42 : 489 - 506
  • [22] Heteroclinic bifurcation in the Michaelis-Menten-type ratio-dependent predator-prey system
    Li, Bingtuan
    Kuang, Yang
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) : 1453 - 1464
  • [23] Chaos and Hopf bifurcation of a hybrid ratio-dependent three species food chain
    Wang, Fengyan
    Pang, Guoping
    CHAOS SOLITONS & FRACTALS, 2008, 36 (05) : 1366 - 1376
  • [24] Bifurcation analysis of a food chain chemostat model with Michaelis-Menten functional response and double delays
    Xu, Xin
    Qiu, Yanhong
    Chen, Xingzhi
    Zhang, Hailan
    Liang, Zhiyuan
    Tian, Baodan
    AIMS MATHEMATICS, 2022, 7 (07): : 12154 - 12176
  • [25] Bifurcation analysis of a discrete type prey-predator model with Michaelis-Menten harvesting in predator
    Mortuja, Golam
    Chaube, Mithilesh Kumar
    Kumar, Santosh
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2023, 78 (06): : 499 - 510
  • [26] Rich dynamics of a stochastic Michaelis-Menten-type ratio-dependent predator-prey system
    Ji, Chunyan
    Jiang, Daqing
    Fu, Jing
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
  • [27] Numerical solutions of a Michaelis-Menten-type ratio-dependent predator-prey system with diffusion
    Wang, Yuan-Ming
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) : 1075 - 1093
  • [28] Bifurcation analysis and control of chaos for a hybrid ratio-dependent three species food chain
    Zhao, Huitao
    Lin, Yiping
    Dai, Yunxian
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 1533 - 1546
  • [29] Periodic Solutions Of A Three-Species Food Chain Model
    Zhang, Liang
    Zhao, Hai-Feng
    APPLIED MATHEMATICS E-NOTES, 2009, 9 : 47 - 54
  • [30] Ratio-Dependent Food Chain Models with Three Trophic Levels
    Kara, R.
    Can, M.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 11, 2006, 11 : 190 - +