Rectangles and squares recognized by two-dimensional automata

被引:0
|
作者
Kari, J [1 ]
Moore, C
机构
[1] Univ Turku, Dept Math, FIN-20014 Turku, Finland
[2] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
[3] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA
[4] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
[5] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider sets of rectangles and squares recognized by deterministic and non-deterministic two-dimensional finite-state automata. We show that sets of squares recognized by DFAs from the inside can be as sparse as any recursively enumerable set. We also show that NFAs can only recognize sets of rectangles from the outside that correspond to simple regular languages.
引用
收藏
页码:134 / 144
页数:11
相关论文
共 50 条
  • [22] Two-Dimensional Limited Context Restarting Automata
    Krtek, Lukas
    Mraz, Frantisek
    FUNDAMENTA INFORMATICAE, 2016, 148 (3-4) : 309 - 340
  • [23] A Synchronization Problem in Two-Dimensional Cellular Automata
    Umeo, Hiroshi
    NATURAL COMPUTING, PROCEEDINGS, 2009, 1 : 222 - 237
  • [24] A note on two-dimensional probabilistic finite automata
    Okazaki, T
    Zhang, L
    Inoue, K
    Ito, A
    Wang, Y
    INFORMATION SCIENCES, 1998, 110 (3-4) : 303 - 314
  • [25] Hardware version for two-dimensional cellular automata
    Dascalu, M
    Franti, E
    Hascsi, Z
    CAS '97 PROCEEDINGS - 1997 INTERNATIONAL SEMICONDUCTOR CONFERENCE, 20TH EDITION, VOLS 1 AND 2, 1997, : 597 - 600
  • [26] On two-dimensional pattern matching by finite automata
    Zdárek, J
    Melichar, B
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, 2006, 3845 : 329 - 340
  • [27] Entropy of two-dimensional permutative cellular automata
    Namiki, Takao
    2013 FIRST INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2013, : 510 - 514
  • [28] Two-Dimensional Input-Revolving Automata
    Immanuel, S. James
    Thomas, D. G.
    Fernau, Henning
    Thamburaj, Robinson
    Nagar, Atulya K.
    COMPUTATIONAL MODELING OF OBJECTS PRESENTED IN IMAGES: FUNDAMENTALS, METHODS, AND APPLICATIONS, COMPIMAGE 2016, 2017, 10149 : 148 - 164
  • [29] Coexistence of Dynamics for Two-Dimensional Cellular Automata
    Severino, Ricardo
    Soares, Maria Joana
    Athayde, Maria Emilia
    COMPLEX SYSTEMS, 2016, 25 (01): : 1 - 21
  • [30] Reversible marker automata on two-dimensional tapes
    Morita, Kenichi
    International Journal of Unconventional Computing, 2019, 14 (5-6): : 413 - 447