Centralized Multi-Sensor Multi-Target Tracking with Labeled Random Finite Sets

被引:0
|
作者
Wei, Baishen [1 ]
Nener, Brett [1 ]
Liu, Weifeng [2 ]
Ma, Liang [3 ]
机构
[1] Univ Western Australia, Sch Elect Elect & Comp Engn, Perth, WA, Australia
[2] Hangzhou Dianzi Univ, Sch Automat, Hangzhou, Zhejiang, Peoples R China
[3] Harbin Engn Univ, Coll Mech & Elect Engn, Harbin, Peoples R China
关键词
delta-GLMB; centralized; sensor network; association map; VISUAL TRACKING; FILTER; ALGORITHM; ORDER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the problem of multi-sensor multi-target tracking. The main contribution is an efficient implementation of the multi-sensor delta-Generalized labeled Multi-Bernoulli (delta-GLMB) update. To truncate the weighted sums of the multi-target exponentials, the ranked assignment algorithm is used in the update to determine the most important terms without computing all the terms. Simulation experiments via linear Gaussian mixture models confirm the effectiveness of the proposed algorithm.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [21] Fuzzy data association in multi-sensor multi-target tracking
    Xie, MH
    Deng, LX
    Wang, ZM
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 2435 - 2438
  • [22] Distributed Multi-Target Tracking Via Generalized Multi-Bernoulli Random Finite Sets
    Wang, Bailu
    Yi, Wei
    Li, Suqi
    Morelande, Mark R.
    Kong, Lingjiang
    Yang, Xiaobo
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 253 - 261
  • [23] Random finite sets and sequential Monte Carlo methods in multi-target tracking
    Vo, BN
    Singh, S
    Doucet, A
    2003 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON RADAR, 2003, : 486 - 491
  • [24] Tracking multi-target and target types using random sets
    Tian, Shu-Rong
    He, You
    Yi, Xiao
    PROCEEDINGS OF 2006 CIE INTERNATIONAL CONFERENCE ON RADAR, VOLS 1 AND 2, 2006, : 1862 - +
  • [25] Multi-target Tracking with Merged Measurements Using Labelled Random Finite Sets
    Beard, Michael
    Vo, Ba Tuong
    Vo, Ba-Ngu
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [26] Probabilistic multi-hypothesis tracking in a multi-sensor, multi-target environment
    Giannopoulos, E
    Streit, R
    Swaszek, P
    ADFS-96 - FIRST AUSTRALIAN DATA FUSION SYMPOSIUM, 1996, : 184 - 189
  • [27] Multi-sensor fusion for multi-target tracking using measurement division
    Liu, Long
    Ji, Hongbing
    Zhang, Wenbo
    Liao, Guisheng
    IET RADAR SONAR AND NAVIGATION, 2020, 14 (09): : 1451 - 1461
  • [28] Multi-sensor multi-target tracking with out-of-sequence measurements
    Zhang, K
    Li, XR
    Chen, H
    FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 672 - 679
  • [29] Application of Particle Swarm Optimization in multi-sensor multi-target tracking
    Yang, Lei
    Hu, Weiwei
    Yang, Shenyuan
    Pu, Shujin
    ISSCAA 2006: 1ST INTERNATIONAL SYMPOSIUM ON SYSTEMS AND CONTROL IN AEROSPACE AND ASTRONAUTICS, VOLS 1AND 2, 2006, : 715 - +
  • [30] Multi-sensor Gaussian Mixture PHD Fusion for Multi-target Tracking
    Shen-Tu H.
    Xue A.-K.
    Zhou Z.-L.
    Zidonghua Xuebao/Acta Automatica Sinica, 2017, 43 (06): : 1028 - 1037