Electrochemical properties of Co3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteries

被引:89
|
作者
Kang, YM
Kim, KT
Kim, JH
Kim, HS
Lee, PS
Lee, JY
Liu, HK
Dou, SX
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon, South Korea
[2] KLA Tencor, San Jose, CA USA
[3] Univ Wollongong, ISEM, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Li ion battery; anode material; transition metal oxide; Ni addition; mechanical milling;
D O I
10.1016/j.jpowsour.2004.02.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By varying the synthetic temperature and time, Co3O4 with highly optimized electrochemical properties was obtained from the solid state reaction of CoCO3. As a result, Co3O4 showed it high capacity around 700 mAh/g and stable capacity retention during cycling (93.4% of initial capacity was retained after 100 cycles). However, its initial irreversible capacity reached about 30% of capacity. Several phenomenological examinations in our previous results told us that the main causes of low initial coulombic efficiency, that is, large initial irreversible capacity, were solid electrolyte interphase (SEI) film formation on surface and incomplete decomposition of Li2O during the first discharge process. SEI film formation cannot be restrained without the development of a special electrolyte, and there has been little research on the proper electrolyte composition, whereas in our research, Ni had the catalytic activity to facilitate Li2O decomposition. Thus, in order to improve the low initial coulombic efficiency of Co3O4 (69%), Ni was added to Co3O4 using two methods like physical mixing and mechanical milling. When adding the same amount of Ni, the mechanical milling showed the improvement in initial coulombic efficiency, 79%, but physical mixing had no effect. Finally, when the charge-discharge mechanism of Co3O4 was considered and the morphologies of Ni-Co3O4 mixture obtained by physical mixing and Ni-Co3O4 composite prepared by mechanical milling were compared, it was revealed that the initial coulombic efficiency of Ni-Co3O4 composite depends on the contact area between the Ni and the Co3O4. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:252 / 259
页数:8
相关论文
共 50 条
  • [31] CoO/Co3O4/graphene nanocomposites as anode materials for lithium-ion batteries
    Zhang, Yanling
    Li, Yong
    Chen, Jin
    Zhao, Pingping
    Li, Degang
    Mu, Jiechen
    Zhang, Lipeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 699 : 672 - 678
  • [32] Dandelion-like mesoporous Co3O4 as anode materials for lithium ion batteries
    Rihui Zhou
    Yaqin Chen
    Yuanyuan Fu
    Yanfei Li
    Shouhui Chen
    Yonghai Song
    Li Wang
    Ionics, 2018, 24 : 1595 - 1602
  • [33] Dandelion-like mesoporous Co3O4 as anode materials for lithium ion batteries
    Zhou, Rihui
    Chen, Yaqin
    Fu, Yuanyuan
    Li, Yanfei
    Chen, Shouhui
    Song, Yonghai
    Wang, Li
    IONICS, 2018, 24 (06) : 1595 - 1602
  • [34] Deposition of Nanocrystal Co3O4 on Graphene Nanosheets as Anode Materials for Lithium Ion Batteries
    Fan, Shan
    Zhang, Yong
    Ma, Xiangang
    Yan, Eryun
    Liu, Xijun
    Li, Shuhua
    Liang, Wenchao
    Zhai, Xiaodong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (08): : 10498 - 10505
  • [35] Study on the Anode Materials of Mn-Co3O4 for Lithium Ion Secondary Batteries
    Yin, Lihui
    ASIAN JOURNAL OF CHEMISTRY, 2013, 25 (02) : 1155 - 1156
  • [36] Controllable preparation of Co3O4 nanosheets and their electrochemical performance for Li-ion batteries
    Hao, Qin
    Li, Menghua
    Jia, Suzhen
    Zhao, Xiaoyun
    Xu, Caixia
    RSC ADVANCES, 2013, 3 (21) : 7850 - 7854
  • [37] Synthesis of Co3O4/Carbon composite nanowires and their electrochemical properties
    Zhang, Peng
    Guo, Zai Ping
    Huang, Yudai
    Jia, Dianzeng
    Liu, Hua Kun
    JOURNAL OF POWER SOURCES, 2011, 196 (16) : 6987 - 6991
  • [38] Electrochemical properties of CNTs/Co3O4 blended-anode for rechargeable lithium batteries
    Yoon, Taek Han
    Park, Yong Joon
    SOLID STATE IONICS, 2012, 225 : 498 - 501
  • [39] Studies of the electrochemical properties of nanosize Co3O4 oxide as an anode material for lithium-ion batteries
    Chen, Y
    Wang, GX
    Konstantinov, K
    Ahn, JH
    Liu, HK
    Dou, SX
    METASTABLE, MECHANICALLY ALLOYED AND NANOCRYSTALLINE MATERIALS, 2003, : 625 - 628
  • [40] Preparation of 3DGO/Co3O4 anode for lithium-ion batteries
    Ren, Mingyuan
    Yang, Xu
    Ye, Han
    Zhang, Yichi
    Hou, Shan
    Zheng, Guoxu
    MATERIALS TODAY COMMUNICATIONS, 2021, 28