Self-Assembly of Triangular and Hexagonal Molecular Necklaces

被引:132
|
作者
Li, Shijun [1 ,2 ]
Huang, Jianying [2 ,3 ]
Zhou, Fengyan [2 ,4 ]
Cook, Timothy R. [2 ]
Yan, Xuzhou [2 ,5 ]
Ye, Yang [1 ]
Zhu, Bin [1 ]
Zheng, Bo [5 ]
Stang, Peter J. [2 ]
机构
[1] Hangzhou Normal Univ, Coll Mat Chem & Chem Engn, Hangzhou 310036, Zhejiang, Peoples R China
[2] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA
[3] Zhejiang Gongshang Univ, Coll Food Sci & Biotechnol, Hangzhou 310035, Zhejiang, Peoples R China
[4] Zaozhuang Coll, Dept Chem, Zaozhuang 277160, Peoples R China
[5] Zhejiang Univ, Dept Chem, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
HYDROGEN-BONDING INTERFACES; 1,2-BIS(PYRIDINIUM)ETHANE AXLES; SUPRAMOLECULAR CHEMISTRY; METAL-COORDINATION; ETHER WHEELS; CROWN-ETHER; DRIVEN; ROTAXANES; DISCRETE; TEMPLATE;
D O I
10.1021/ja502490k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The formation of catenated systems can be simplified greatly if one or more rings are generated via self-assembly. Herein we exploit the orthogonality of coordination-driven self-assembly and crown-ether host-guest complexation to obtain a [4]molecular necklace and a [7]molecular necklace based on a well-developed recognition motif of 1,2-bis(pyridinium)ethane/dibenzo[24]crown-8. By adapting the bis(pyridinium) motif into the backbone of a donor building block, the resulting semirigid dipyridyl species can serve both as a structural element in the formation of metallacycles and as a site for subsequent host-guest chemistry. The pseudo-linear nature of the donor precursor lends itself to the formation of triangular and hexagonal central metallacycles based on the complementary acceptor unit used. This exemplary system organizes up to 18 molecules from three unique species in solution to afford a single supramolecular ensemble.
引用
收藏
页码:5908 / 5911
页数:4
相关论文
共 50 条
  • [31] Molecular assembly and self-assembly: Molecular nanoscience for future technologies
    de Wild, M
    Berner, S
    Suzuki, H
    Ramoino, L
    Baratoff, A
    Jung, TA
    CHIMIA, 2002, 56 (10) : 500 - 505
  • [32] Molecular assembly and self-assembly - Molecular nanoscience for future technologies
    De Wild, M
    Berner, S
    Suzuki, H
    Ramoino, L
    Baratoff, A
    Jung, TA
    MOLECULAR ELECTRONICS III, 2003, 1006 : 291 - 305
  • [33] Chains, Necklaces and Weaving Chain-link Grids from Self-Assembly Reactions
    Alvarino, Cristina
    Simond, Damien
    Lorente, Pau Moneva
    Besnard, Celine
    Williams, Alan F.
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (24) : 8851 - 8858
  • [34] Molecular architecture via coordination: Self-assembly of nanoscale hexagonal metallodendrimers with designed building blocks
    Yang, Hai-Bo
    Das, Neeladri
    Huang, Feihe
    Hawkridge, Adam M.
    Muddiman, David C.
    Stang, Peter J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (31) : 10014 - 10015
  • [35] Symmetry, equivalence, and molecular self-assembly
    Van Workum, K
    Douglas, JF
    PHYSICAL REVIEW E, 2006, 73 (03):
  • [36] MOLECULAR SELF-ASSEMBLY Helping themselves
    Otto, Sijbren
    NATURE NANOTECHNOLOGY, 2009, 4 (01) : 13 - 14
  • [37] β-functionalized oligothiophenes for molecular self-assembly
    Michalitsch, R
    Nogues, C
    Najari, A
    El Kassmi, A
    Yassar, A
    Lang, P
    Garnier, F
    SYNTHETIC METALS, 1999, 101 (1-3) : 5 - 6
  • [38] Indistinguishability of the models of molecular self-assembly
    Evstigneev, Maxim P.
    Buchelnikov, Anatoly S.
    Kostjukov, Viktor V.
    Pashkova, Irina S.
    Evstigneev, Vladyslav P.
    SUPRAMOLECULAR CHEMISTRY, 2013, 25 (04) : 199 - 203
  • [39] Emergent self-assembly of molecular spheres
    Fujita, Makoto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [40] Self-assembly of molecular brush amphiphiles
    Luo, Hanying
    Herrera-Alonso, Margarita
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247