Bactericidal mechanism of nanopatterned surfaces

被引:143
|
作者
Li, Xinlei [1 ,2 ]
机构
[1] S China Normal Univ, Coll Biophoton, MOE Key Lab Laser Life Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] S China Normal Univ, Coll Biophoton, Inst Laser Life Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY; CURVATURE; ADHESION;
D O I
10.1039/c5cp05646b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The quest to design and fabricate new antibacterial surfaces is an important task to meet the urgent demands of biomedical applications. Recently, a mechanical mechanism for killing adherent bacteria was discovered on nanopatterned surfaces, but there is a lack of understanding of the bactericidal mechanism. Here we present a quantitative thermodynamic model to study the bactericidal mechanism of nanopatterned surfaces through analyzing the total free energy change of bacterial cells. By comparing the bacterial cells on a flat surface and nanopatterned surface, our theoretical results reveal that cicada wing-like nanopatterned surfaces have more effective bactericidal properties than flat surfaces because a patterned surface leads to a drastic increase of the contact adhesion area. Our model also reveals some details of the influence mechanism, and gives some important information about how to improve the bactericidal properties through designing the morphology of the patterned surface.
引用
收藏
页码:1311 / 1316
页数:6
相关论文
共 50 条
  • [21] Electric charge of nanopatterned silica surfaces
    Ozcelik, H. Gokberk
    Barisik, Murat
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (14) : 7576 - 7587
  • [22] Nanopatterned surfaces for effective cochlear implants
    Erlandsson, A.
    Pesen, D.
    Kahlifa, S.
    Rundqvist, J.
    Hoh, J.
    Haviland, D.
    Ulfendahl, M.
    TISSUE ENGINEERING, 2007, 13 (04): : 893 - 893
  • [23] Comment on "Liquids on topologically nanopatterned surfaces"
    Rascon, C.
    PHYSICAL REVIEW LETTERS, 2007, 98 (19)
  • [24] An analytical model of nanopatterned superhydrophobic surfaces
    K. Xiao
    Y. P. Zhao
    G. Ouyang
    X. L. Li
    Journal of Coatings Technology and Research, 2017, 14 : 1297 - 1306
  • [25] Wetting of heterogeneous nanopatterned inorganic surfaces
    Jarn, Mikael
    Brieler, Felix J.
    Kuemmel, Monica
    Grosso, David
    Linden, Mika
    CHEMISTRY OF MATERIALS, 2008, 20 (04) : 1476 - 1483
  • [26] Metastable Sessile Nanodroplets on Nanopatterned Surfaces
    Ritchie, John A.
    Yazdi, Jamileh Seyed
    Bratko, Dusan
    Luzar, Alenka
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (15): : 8634 - 8641
  • [27] HELIUM ON NANOPATTERNED SURFACES AT FINITE TEMPERATURE
    Hernandez, E. S.
    Ancilotto, F.
    Barranco, M.
    Hernando, A.
    Pi, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (25-26): : 4915 - 4922
  • [28] Fibronectin adsorption to nanopatterned silicon surfaces
    Salakhutdinov, I.
    VandeVord, P.
    Palyvoda, O.
    Matthew, H.
    Tatagiri, G.
    Handa, H.
    Mao, G.
    Auner, G. W.
    Newaz, G.
    JOURNAL OF NANOMATERIALS, 2008, 2008
  • [29] The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces
    Ivanova, Elena P.
    Linklater, Denver P.
    Werner, Marco
    Baulin, Vladimir A.
    Xu, XiuMei
    Vrancken, Nandi
    Rubanov, Sergey
    Hanssen, Eric
    Wandiyanto, Jason
    Truong, Vi Khanh
    Elbourne, Aaron
    Maclaughlin, Shane
    Juodkazis, Saulius
    Crawford, Russell J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (23) : 12598 - 12605
  • [30] nanostructured bactericidal surfaces
    Patil, Deepak
    Overland, Maya
    Stoller, Marshall
    Chatterjee, Kaushik
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2021, 34