POWER PARTITIONS AND SEMI-m-FIBONACCI PARTITIONS

被引:1
|
作者
Alanazi, Abdulaziz M. [1 ]
Munagi, Augustine O. [2 ]
Nyirenda, Darlison [2 ]
机构
[1] Univ Tabuk, Fac Sci, Dept Math, POB 741, Tabuk 71491, Saudi Arabia
[2] Univ Witwatersrand, Sch Math, PO Wits 2050, Johannesburg, South Africa
关键词
partition; bijection; congruence;
D O I
10.1017/S0004972720000027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Andrews ['Binary and semi-Fibonacci partitions', J. Ramanujan Soc. Math. Math. Sci. 7(1) (2019), 1-6] recently proved a new identity between the cardinalities of the set of semi-Fibonacci partitions and the set of partitions into powers of 2 with all parts appearing an odd number of times. We extend the identity to the set of semi-m-Fibonacci partitions of n and the set of partitions of n into powers of m in which all parts appear with multiplicity not divisible by m. We also give a new characterisation of semi-m-Fibonacci partitions and some congruences satisfied by the associated number sequence.
引用
收藏
页码:418 / 429
页数:12
相关论文
共 50 条
  • [41] Sequentially congruent partitions and partitions into squares
    Robert Schneider
    James A. Sellers
    Ian Wagner
    The Ramanujan Journal, 2021, 56 : 645 - 650
  • [42] Parity biases in partitions and restricted partitions
    Banerjee, Koustav
    Bhattacharjee, Sreerupa
    Dastidar, Manosij Ghosh
    Mahanta, Pankaj Jyoti
    Saikia, Manjil P.
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 103
  • [43] Partitions power enterprise clinet/server
    Darling, CB
    DATAMATION, 1996, 42 (18): : 124 - &
  • [44] Sequentially congruent partitions and partitions into squares
    Schneider, Robert
    Sellers, James A.
    Wagner, Ian
    RAMANUJAN JOURNAL, 2021, 56 (02): : 645 - 650
  • [45] Adjunctions on the lattices of partitions and of partial partitions
    Ronse, Christian
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2010, 21 (05) : 343 - 396
  • [46] GENERALIZED WEIGHTED M-TH POWER PARTITIONS OVER A FINITE FIELD
    HODGES, JH
    DUKE MATHEMATICAL JOURNAL, 1962, 29 (03) : 405 - &
  • [47] PARTITIONS INTO m -TH LEHMER NUMBERS AND k -TH POWER RESIDUES IN Zp
    Su, Yongli
    Wang, Jiankang
    Zhang, Bo
    Xu, Zhefeng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (03): : 669 - 678
  • [48] Partitions
    Kane, Fawzia Muradali
    POETRY REVIEW, 2020, 110 (03): : 12 - 13
  • [49] PARTITIONS
    CELKO, J
    DR DOBBS JOURNAL, 1994, 19 (13): : 116 - 117
  • [50] On Semi-discrete Monge–Kantorovich and Generalized Partitions
    Gershon Wolansky
    Journal of Optimization Theory and Applications, 2015, 165 : 359 - 384