We present an unconditionally stable hybrid finite element method for solving the Allen-Cahn equation, which describes the temporal evolution of a non-conserved phase-field during the antiphase domain coarsening in a binary mixture. Its various modified forms have been applied to image analysis, motion by mean curvature, crystal growth, topology optimization, and two-phase fluid flows. The hybrid method is based on the operator splitting method. The equation is split into a heat equation and a nonlinear equation. An implicit finite element method is applied to solve the diffusion equation and then the nonlinear equation is solved analytically. Various numerical experiments are presented to confirm the accuracy and efficiency of the method. Our simulation results are consistent with previous theoretical and numerical results. (C) 2014 Elsevier Inc. All rights reserved.
机构:
Cent Connecticut State Univ, Dept Math Sci, 120 Marcus White Hall, New Britain, CT 06050 USACent Connecticut State Univ, Dept Math Sci, 120 Marcus White Hall, New Britain, CT 06050 USA