Hybrid 3D Registration Approach using RGB and Depth Images

被引:0
|
作者
Syed, Imran A. [1 ]
Sharma, Bishwajit [1 ]
机构
[1] Ctr Artificial Intelligence & Robot, Intelligent Syst & Robot Div, Bangalore 560001, Karnataka, India
关键词
3D Registration; RANSAC; Hybrid approach; Depth Image; Range Image; Kinect; Xtion Pro Live SIFT; SURF; RGB-D; CenSurE; CCP;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel technique for registration of 3D point sets using both the RGB data as well as the depth data. The main advantage of any RGB-D sensor is the pixel wise correspondence between RGB values and depth values, which can be leveraged to register two RGB-D datasets. RGB images are used for correspondence identification and these correspondences are transferred to depth images to be used for the registration algorithm. RANSAC is used for rejection of noisy data points, which increases the registration accuracy. We also analyze and present an error threshold selection strategy for fitting 3D points. Our approach achieves faster execution, thus enabling real-time implementation of change detection and 3D mapping of the environment, etc. Multiple feature extraction methods have been tested to evaluate tradeoffs between accuracy and time.
引用
收藏
页码:27 / 32
页数:6
相关论文
共 50 条
  • [41] Basic 3D Solid Recognition in RGB-D Images
    Kornuta, Tomasz
    Stefanczyk, Maciej
    Kasprzak, Wlodzimierz
    RECENT ADVANCES IN AUTOMATION, ROBOTICS AND MEASURING TECHNIQUES, 2014, 267 : 421 - 430
  • [42] Single image summarization of 3D animation using depth images
    Lee, Hwan-Jik
    Shin, Hyun Joon
    Choi, Jung-Ju
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2012, 23 (3-4) : 417 - 424
  • [43] 3D Object Finding Using Geometrical Constraints on Depth Images
    Van-Hung Le
    Hai Vu
    Thuy Thi Nguyen
    Thi-Lan Le
    Thi-Thanh-Hai Tran
    Vlaminck, Michiel
    Philips, Wilfried
    Veelaert, Peter
    2015 SEVENTH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE), 2015, : 389 - 394
  • [44] Category Level 3D Object Recognition using Depth Images
    Kayim, Guney
    Akgul, Ceyhun Burak
    Sankur, Bulent
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [45] 3D pottery shape matching using depth map images
    Koutsoudis, Anestis
    Chamzas, Christodoulos
    JOURNAL OF CULTURAL HERITAGE, 2011, 12 (02) : 128 - 133
  • [46] 3D VISUALIZATION OF SINGLE IMAGES USING PATCH LEVEL DEPTH
    Yousefi, Shahrouz
    Kondori, Farid Abedan
    Li, Haibo
    2011 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND MULTIMEDIA APPLICATIONS (SIGMAP 2011), 2011,
  • [47] 3D reconstruction and multiple point cloud registration using a low precision RGB-D sensor
    Takimoto, Rogerio Yugo
    Guerra Tsuzuki, Marcos de Sales
    Vogelaar, Renato
    Martins, Thiago de Castro
    Sato, Andre Kubagawa
    Iwao, Yuma
    Gotoh, Toshiyuki
    Kagei, Seiichiro
    MECHATRONICS, 2016, 35 : 11 - 22
  • [48] Fine Registration of 3D Point Clouds with Iterative Closest Point Using an RGB-D Camera
    Xie, Jun
    Hsu, Yu-Feng
    Feris, Rogerio Schmidt
    Sun, Ming-Ting
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 2904 - 2907
  • [49] Iterative Online 3D Reconstruction from RGB Images
    Cardoen, Thorsten
    Leroux, Sam
    Simoens, Pieter
    SENSORS, 2022, 22 (24)
  • [50] 3D Virtual Garment Modeling from RGB Images
    Xu, Yi
    Yang, Shanglin
    Sun, Wei
    Tan, Li
    Li, Kefeng
    Zhou, Hui
    2019 IEEE INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY (ISMAR), 2019, : 37 - 45