Harmonic functions on homogeneous spaces

被引:6
|
作者
Chu, CH [1 ]
Leung, CW
机构
[1] Univ London Goldsmiths Coll, London SE14 6NW, England
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 1999年 / 128卷 / 03期
关键词
harmonic function; homogeneous space; Liouville property; SIN]-group;
D O I
10.1007/s006050050060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a locally compact group G acting on a locally compact space X and a probability measure sigma on G, a real Borel function f on X is called sigma-harmonic if it satisfies the convolution equation f = sigma*f. We give conditions for the absence of nonconstant bounded harmonic functions. We show that, if G is a union of sigma-admissible neighbourhoods of the identity, relative to X, then every bounded sigma-harmonic function on X is constant. Consequently, for spread out sigma, the bounded sigma-harmonic functions are constant on each connected component of a [SIN]-group and, if G acts strictly transitively on a splittable metric space X, then the bounded sigma-harmonic functions on X are constant which extends Furstenberg's result for connected semisimple Lie groups.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 50 条
  • [41] Harmonic functions and quadratic harmonic morphisms on Walker spaces
    Bejan, Cornelia-Livia
    Druta-Romaniuc, Simona-Luiza
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (05) : 1004 - 1019
  • [42] Weighted Banach spaces of harmonic functions
    Enrique Jordá
    Ana María Zarco
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 : 405 - 418
  • [43] THE SOBOLEV SPACES OF HARMONIC-FUNCTIONS
    LIGOCKA, E
    STUDIA MATHEMATICA, 1986, 84 (01) : 79 - 87
  • [44] GEODESICS AND HARMONIC FUNCTIONS ON SYMMETRIC SPACES
    KARPELEVICH, FI
    DOKLADY AKADEMII NAUK SSSR, 1959, 124 (06): : 1199 - 1202
  • [45] Harmonic functions on metric measure spaces
    Adamowicz, Tomasz
    Gaczkowski, Michal
    Gorka, Przemyslaw
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 141 - 186
  • [46] Isometries of weighted spaces of harmonic functions
    Boyd, Christopher
    Rueda, Pilar
    POTENTIAL ANALYSIS, 2008, 29 (01) : 37 - 48
  • [47] DIMENSION OF SPACES OF HARMONIC-FUNCTIONS
    GRIGORYAN, AA
    MATHEMATICAL NOTES, 1990, 48 (5-6) : 1114 - 1118
  • [48] Harmonic functions on metric measure spaces
    Tomasz Adamowicz
    Michał Gaczkowski
    Przemysław Górka
    Revista Matemática Complutense, 2019, 32 : 141 - 186
  • [49] Hilbert spaces related to harmonic functions
    Fujita, K
    TOHOKU MATHEMATICAL JOURNAL, 1996, 48 (01) : 149 - 163
  • [50] Isometries of Weighted Spaces of Harmonic Functions
    Christopher Boyd
    Pilar Rueda
    Potential Analysis, 2008, 29 : 37 - 48