Harmonic functions on homogeneous spaces

被引:6
|
作者
Chu, CH [1 ]
Leung, CW
机构
[1] Univ London Goldsmiths Coll, London SE14 6NW, England
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 1999年 / 128卷 / 03期
关键词
harmonic function; homogeneous space; Liouville property; SIN]-group;
D O I
10.1007/s006050050060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a locally compact group G acting on a locally compact space X and a probability measure sigma on G, a real Borel function f on X is called sigma-harmonic if it satisfies the convolution equation f = sigma*f. We give conditions for the absence of nonconstant bounded harmonic functions. We show that, if G is a union of sigma-admissible neighbourhoods of the identity, relative to X, then every bounded sigma-harmonic function on X is constant. Consequently, for spread out sigma, the bounded sigma-harmonic functions are constant on each connected component of a [SIN]-group and, if G acts strictly transitively on a splittable metric space X, then the bounded sigma-harmonic functions on X are constant which extends Furstenberg's result for connected semisimple Lie groups.
引用
收藏
页码:227 / 235
页数:9
相关论文
共 50 条