Preconditioners for nonconforming domain decomposition methods

被引:1
|
作者
Rodrigues, JA [1 ]
机构
[1] Univ Tecn Lisboa, Ctr Matemat Aplicada, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
domain decomposition methods; finite elements; mortar spaces;
D O I
10.1016/S0377-0427(99)00145-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we briefly discuss two preconditioner techniques, the Neumann-Neumann-preconditioner and the Dirichlet-Neumann-preconditioner, for nonconforming domain decomposition methods. We will show with some examples that the numerical results obtained with nonconforming multidomain techniques are qualitatively equivalent to the results obtained on an unique domain. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 50 条
  • [21] A relation of preconditioners for magnetostatic domain decomposition analysis
    Kanayama, Hiroshi
    Ogino, Masao
    Sugimoto, Shin-ichiro
    Yodo, Kaworu
    JOURNAL OF ADVANCED SIMULATION IN SCIENCE AND ENGINEERING, 2020, 8 (01): : 27 - 39
  • [22] Balancing domain decomposition for nonconforming plate elements
    Susanne C. Brenner
    Li-yeng Sung
    Numerische Mathematik, 1999, 83 : 25 - 52
  • [23] Local preconditioners for two-level non-overlapping domain decomposition methods
    Carvalho, LM
    Giraud, L
    Meurant, G
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2001, 8 (04) : 207 - 227
  • [24] Nonconforming domain decomposition techniques for linear elasticity
    Krause, R.H.
    Wohlmuth, B.I.
    East-West Journal of Numerical Mathematics, 2000, 8 (03): : 177 - 206
  • [25] Balancing domain decomposition for nonconforming plate elements
    Brenner, SC
    Sung, LY
    NUMERISCHE MATHEMATIK, 1999, 83 (01) : 25 - 52
  • [26] Two-level additive Schwarz preconditioners for nonconforming finite element methods
    Brenner, SC
    MATHEMATICS OF COMPUTATION, 1996, 65 (215) : 897 - 921
  • [27] SUBSTRUCTURE PRECONDITIONERS FOR NONCONFORMING PLATE ELEMENTS
    Zhong-ci Shi(The State Key Lab of Scientific & Engineering Computing
    Journal of Computational Mathematics, 1998, (04) : 289 - 304
  • [28] Substructure preconditioners for nonconforming plate elements
    Shi, ZC
    Xie, ZH
    DOMAIN DECOMPOSITION METHODS IN SCIENCES AND ENGINEERING, 1997, : 109 - 115
  • [29] Domain Decomposition Preconditioners for Communication-Avoiding Krylov Methods on a Hybrid CPU/GPU Cluster
    Yamazaki, Ichitaro
    Rajamanickam, Sivasankaran
    Boman, Erik G.
    Hoemmen, Mark
    Heroux, Michael A.
    Tomov, Stanimire
    SC14: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2014, : 933 - 944
  • [30] Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods
    Tang, J. M.
    Nabben, R.
    Vuik, C.
    Erlangga, Y. A.
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (03) : 340 - 370