A novel comparative study for detection of Covid-19 on CT lung images using texture analysis, machine learning, and deep learning methods

被引:43
|
作者
Yasar, Huseyin [1 ]
Ceylan, Murat [2 ]
机构
[1] Minist Hlth Republ Turkey, Ankara, Turkey
[2] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Konya, Turkey
关键词
Covid-19; Convolutional neural networks (CNN); Deep learning; Lung CT classification; Machine learning; Texture analysis methods; CORONAVIRUS DISEASE; DIAGNOSIS; 2019-NCOV; PATIENT; WUHAN;
D O I
10.1007/s11042-020-09894-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Covid-19 virus outbreak that emerged in China at the end of 2019 caused a huge and devastating effect worldwide. In patients with severe symptoms of the disease, pneumonia develops due to Covid-19 virus. This causes intense involvement and damage in lungs. Although the emergence of the disease occurred a short time ago, many literature studies have been carried out in which these effects of the disease on the lungs were revealed by the help of lung CT imaging. In this study, 1.396 lung CT images in total (386 Covid-19 and 1.010 Non-Covid-19) were subjected to automatic classification. In this study, Convolutional Neural Network (CNN), one of the deep learning methods, was used which suggested automatic classification of CT images of lungs for early diagnosis of Covid-19 disease. In addition, k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM) was used to compare the classification successes of deep learning with machine learning. Within the scope of the study, a 23-layer CNN architecture was designed and used as a classifier. Also, training and testing processes were performed for Alexnet and Mobilenetv2 CNN architectures as well. The classification results were also calculated for the case of increasing the number of images used in training for the first 23-layer CNN architecture by 5, 10, and 20 times using data augmentation methods. To reveal the effect of the change in the number of images in the training and test clusters on the results, two different training and testing processes, 2-fold and 10-fold cross-validation, were performed and the results of the study were calculated. As a result, thanks to these detailed calculations performed within the scope of the study, a comprehensive comparison of the success of the texture analysis method, machine learning, and deep learning methods in Covid-19 classification from CT images was made. The highest mean sensitivity, specificity, accuracy, F-1 score, and AUC values obtained as a result of the study were 0,9197, 0,9891, 0,9473, 0,9058, 0,9888; respectively for 2-fold cross-validation, and they were 0,9404, 0,9901, 0,9599, 0,9284, 0,9903; respectively for 10-fold cross-validation.
引用
收藏
页码:5423 / 5447
页数:25
相关论文
共 50 条
  • [41] A novel deep learning-based method for COVID-19 pneumonia detection from CT images
    Luo, Ju
    Sun, Yuhao
    Chi, Jingshu
    Liao, Xin
    Xu, Canxia
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [42] A novel deep learning-based method for COVID-19 pneumonia detection from CT images
    Ju Luo
    Yuhao Sun
    Jingshu Chi
    Xin Liao
    Canxia Xu
    BMC Medical Informatics and Decision Making, 22
  • [43] Intelligent Detection for CT Image of COVID-19 using Deep Learning
    Liu, Jingxin
    Zhang, Zhong
    Zu, Lihui
    Wang, Hairihan
    Zhong, Yutong
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 76 - 81
  • [44] Machine Learning and Deep Learning-Based Detection and Analysis of COVID-19 in Chest X-Ray Images
    Kumar, Kunal
    Shokeen, Harsh
    Gambhir, Shalini
    Kumar, Ashwani
    Saraswat, Amar
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 151 - 160
  • [45] Analysis of Machine Learning Methods for COVID-19 Detection Using Serum Raman Spectroscopy
    Chen, David
    APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (14) : 1147 - 1168
  • [46] COVID-19 Detection Using Image Analysis Methods on CT Images
    Elbakary, Mohamed, I
    Iftekharuddin, Khan M.
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [47] Diagnosis of COVID-19 using CT scan images and deep learning techniques
    Shah, Vruddhi
    Keniya, Rinkal
    Shridharani, Akanksha
    Punjabi, Manav
    Shah, Jainam
    Mehendale, Ninad
    EMERGENCY RADIOLOGY, 2021, 28 (03) : 497 - 505
  • [48] Diagnosis of COVID-19 using CT scan images and deep learning techniques
    Vruddhi Shah
    Rinkal Keniya
    Akanksha Shridharani
    Manav Punjabi
    Jainam Shah
    Ninad Mehendale
    Emergency Radiology, 2021, 28 : 497 - 505
  • [49] Deep Learning for COVID-19 Diagnosis from CT Images
    Loddo, Andrea
    Pili, Fabio
    Di Ruberto, Cecilia
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [50] Detection of COVID-19 using deep learning techniques and classification methods
    Oguz, Cinare
    Yaganoglu, Mete
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)