A DIRECT ALGORITHM FOR JOINT OPTIMAL SENSOR SCHEDULING AND MAP STATE ESTIMATION FOR HIDDEN MARKOV MODELS

被引:0
|
作者
Jun, David [1 ]
Cohen, David M. [1 ]
Jones, Douglas L. [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
sensor management; POMDP; controlled HMM;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sensing systems with multiple sensors and operating modes warrant active management techniques to balance estimation quality and measurement costs. Existing literature shows that in the joint sensor-scheduling and state-estimation problem for HMMs, estimator optimization can be done independently of the scheduler at each time step. We investigate the special case when a MAP estimator is used, and show how the joint problem can be converted to a standard Partially Observable Markov Decision Process (POMDP), which in turn enables us to use POMDP solvers. As this approach is highly redundant, we derive a direct solution, which exploits the separability property while still utilizing standard solvers. When compared to standard techniques, the direct algorithm provides savings by a factor of the state-space dimension. Numerical results are given for an example motivated by wildlife monitoring.
引用
收藏
页码:4212 / 4215
页数:4
相关论文
共 50 条
  • [41] Next State Prediction Algorithm for the Avionic systems using the Hidden Markov Models
    Lokesh, M. R.
    Kumaraswamy, Y. S.
    2015 International Conference on Green Computing and Internet of Things (ICGCIoT), 2015, : 1618 - 1623
  • [42] S-estimation of hidden Markov models
    Farcomeni, Alessio
    Greco, Luca
    COMPUTATIONAL STATISTICS, 2015, 30 (01) : 57 - 80
  • [43] A framework for mixed estimation of hidden Markov models
    Dey, S
    Marcus, SI
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3473 - 3478
  • [44] S-estimation of hidden Markov models
    Alessio Farcomeni
    Luca Greco
    Computational Statistics, 2015, 30 : 57 - 80
  • [45] Shrinkage Estimation for Multivariate Hidden Markov Models
    Fiecas, Mark
    Franke, Juergen
    von Sachs, Rainer
    Kamgaing, Joseph Tadjuidje
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) : 424 - 435
  • [46] Minimax a posteriori estimation in the hidden Markov models
    Borisov, A. V.
    AUTOMATION AND REMOTE CONTROL, 2007, 68 (11) : 1917 - 1930
  • [47] Maximum spacing estimation for hidden Markov models
    Kristi Kuljus
    Bo Ranneby
    Statistical Inference for Stochastic Processes, 2025, 28 (1)
  • [48] Semiparametric hidden Markov models: identifiability and estimation
    Dannemann, Joern
    Holzmann, Hajo
    Leister, Anna
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (06): : 418 - 425
  • [49] Nonparametric Density Estimation in Hidden Markov Models
    C.C.Y. Dorea
    L.C. Zhao
    Statistical Inference for Stochastic Processes, 2002, 5 (1) : 55 - 64
  • [50] Estimation and strong approximation of hidden Markov models
    Gerencsér, L
    Molnár-Sáska, G
    POSITIVE SYSTEMS, PROCEEDINGS, 2003, 294 : 313 - 320