TAC-TICS: Transposon-based insect control systems

被引:0
|
作者
Grigliatti, TA [1 ]
Pfeifer, TA [1 ]
Meister, GA [1 ]
机构
[1] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada
关键词
D O I
暂无
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
We describe a system in which a specific population of a single pest insect type is targeted for management by making that population susceptible to control. In this paper we discuss the four key components of this genetic control system: transformation of the targeted insect; dissemination of the engineered construct throughout the targeted population; the inducible promoter to activate the expression of the fourth component; the incapacitating gene or genes. We describe the progress made in transformation of insects other than Drosophila. Using populations of model organisms, we show that transposon constructs can spread quite rapidly through a targeted population. We provide evidence that the multiplicative transposition process, which drives the spread of the engineered transposon construct, is not highly en-or prone and thus the use of TAC constructs in insect populations is feasible. The genes that might be used as relatively insect-specific incapacitating genes if over-expressed, mis-expressed or inactivated in specific insects or insect tissues include: genes that encode a variety of hormones and neuropeptides and their receptors; developmental selector genes, that is,. genes that control entry or exclusion of certain developmental pathways; genes that control components of signal cascades, which coordinate most of the physiological responses within and between tissues in an organism; cell cycle control genes; paralytic peptides; and many others. Finally we discuss a novel cell-based functional assay system which should allow investigators to test the function of inducible promoters, and some potential incapacitating genes, in a wide variety of insect systems prior to creating transgenic insect. Use of this in vivo test system should result in a significant saving of time in creating and testing specific TAC constructs.
引用
收藏
页码:201 / 216
页数:16
相关论文
共 50 条
  • [41] Progress on the development of transposon-based transgenic technology for the identification of novel retinal genes
    Morris, AC
    Fadool, JM
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 : U390 - U390
  • [42] MTV, an ssDNA Protecting Complex Essential for Transposon-Based Telomere Maintenance in Drosophila
    Zhang, Yi
    Zhang, Liang
    Tang, Xiaona
    Bhardwaj, Shilpa R.
    Ji, Jingyun
    Rong, Yikang S.
    PLOS GENETICS, 2016, 12 (11):
  • [43] A transposon-based strategy to scale up myxothiazol production in myxobacterial cell factories
    Sandmann, A.
    Frank, B.
    Mueller, R.
    JOURNAL OF BIOTECHNOLOGY, 2008, 135 (03) : 255 - 261
  • [44] STRUCTURE-FUNCTION ANALYSIS OF RYANODINE RECEPTOR SUBDOMAINS BY TRANSPOSON-BASED MUTAGENESIS
    Murayama, Takashi
    Kobayashi, Takuya
    Kashiyama, Taku
    Kurebayashi, Nagomi
    Kimori, Yoshitaka
    Morone, Nobuhiro
    Kitai, Toshiyuki
    Takahagi, Takayuki
    JOURNAL OF PHYSIOLOGICAL SCIENCES, 2009, 59 : 309 - 309
  • [45] Transgenetic expression by cytoplasmic injection of plasmids and transposon-based constructs in mammalian embryos
    Garrels, Wiebke
    Holler, Stephanie
    Ivics, Z.
    Niemann, H.
    Kues, W. A.
    ZUCHTUNGSKUNDE, 2011, 83 (01): : 47 - 67
  • [46] A Transposon-Based Genetic Screen in Mice Identifies Genes Altered in Colorectal Cancer
    Starr, Timothy K.
    Allaei, Raha
    Silverstein, Kevin A. T.
    Staggs, Rodney A.
    Sarver, Aaron L.
    Bergemann, Tracy L.
    Gupta, Mihir
    O'Sullivan, M. Gerard
    Matise, Ilze
    Dupuy, Adam J.
    Collier, Lara S.
    Powers, Scott
    Oberg, Ann L.
    Asmann, Yan W.
    Thibodeau, Stephen N.
    Tessarollo, Lino
    Copeland, Neal G.
    Jenkins, Nancy A.
    Cormier, Robert T.
    Largaespada, David A.
    SCIENCE, 2009, 323 (5922) : 1747 - 1750
  • [47] Improved transposon-based tools for generating random GFP fusion proteins.
    Sheridan, DL
    Hughes, TE
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 626A - 627A
  • [48] Sleeping Beauty Transposon-Based Integration System Analysis in Human Epithelial Cells
    Turchiano, Giandomenico
    Latella, Maria Carmela
    Cocchiarella, Fabienne
    Izsvak, Zsuzsanna
    Ivics, Zoltan
    Mavilio, Fulvio
    Recchia, Alessandra
    MOLECULAR THERAPY, 2012, 20 : S49 - S50
  • [49] A multipurpose transposon-based vector system mediates protein expression in Rhodococcus erythropolis
    Sallam, Khalid Ibrahim
    Tamura, Noriko
    Tamura, Tomohiro
    GENE, 2007, 386 (1-2) : 173 - 182
  • [50] Development of transposon-based CAR-T cells for the treatment of patients with lymphoma
    Diez, B.
    Calvino, C.
    Fernandez-Garcia, M.
    Hernado-Garcia, M.
    Alvarez, L.
    Lozano, M. L.
    Rodriguez-Diaz, S.
    Martinez-Turrillas, R.
    Jauregui, P.
    Iglesias, E.
    San Martin-Uriz, P.
    Ceballos, C.
    Lopez-Corral, L.
    Navarro, A.
    Alfonso, A.
    Rifon, J.
    Serrano-Lopez, J.
    Llamas, P.
    Viguria, M. C.
    Redondo, M.
    Juan, M.
    Sanchez-Salinas, A.
    Miskey, C.
    Ivics, Z.
    Sanchez-Guijo, F.
    Inoges, S. I.
    Lopez-Diaz de Cerio, A.
    Rodriguez-Madoz, J. R.
    Yanez, R. M.
    Bueren, J. A.
    Prosper, F.
    HUMAN GENE THERAPY, 2022, 33 (23-24) : A126 - A127