Exploration-exploitation tradeoff using variance estimates in multi-armed bandits

被引:296
|
作者
Audibert, Jean-Yves [1 ,2 ]
Munos, Remi [3 ]
Szepesvari, Csaba [4 ]
机构
[1] Univ Paris Est, Ecole Ponts ParisTech, CERTIS, F-77455 Marne La Vallee, France
[2] Willow ENS INRIA, F-75005 Paris, France
[3] INRIA Lille Nord Europe, SequeL Project, F-59650 Villeneuve Dascq, France
[4] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Exploration-exploitation tradeoff; Multi-armed bandits; Bernstein's inequality; High-probability bound; Risk analysis;
D O I
10.1016/j.tcs.2009.01.016
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Algorithms based on upper confidence bounds for balancing exploration and exploitation are gaining popularity since they are easy to implement, efficient and effective. This paper considers a variant of the basic algorithm for the stochastic, multi-armed bandit problem that takes into account the empirical variance of the different arms. In earlier experimental works, Such algorithms were found to outperform the competing algorithms. We provide the first analysis of the expected regret for such algorithms. As expected, our results show that the algorithm that uses the variance estimates has a major advantage over its alternatives that do not use Such estimates provided that the variances of the payoffs of the suboptimal arms are low. We also prove that the regret concentrates only at a polynomial rate. This holds for all the upper confidence bound based algorithms and for all bandit problems except those special ones where with probability one the payoff obtained by pulling the optimal arm is larger than the expected payoff for the second best arm. Hence, although upper confidence bound bandit algorithms achieve logarithmic expected regret rates, they might not be Suitable for a risk-averse decision maker. We illustrate some of the results by Computer simulations. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1876 / 1902
页数:27
相关论文
共 50 条
  • [41] Visualizations for interrogations of multi-armed bandits
    Keaton, Timothy J.
    Sabbaghi, Arman
    STAT, 2019, 8 (01):
  • [42] Multi-armed bandits with dependent arms
    Singh, Rahul
    Liu, Fang
    Sun, Yin
    Shroff, Ness
    MACHINE LEARNING, 2024, 113 (01) : 45 - 71
  • [43] On Kernelized Multi-Armed Bandits with Constraints
    Zhou, Xingyu
    Ji, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [44] Multi-Armed Bandits in Metric Spaces
    Kleinberg, Robert
    Slivkins, Aleksandrs
    Upfal, Eli
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 681 - +
  • [45] Multi-Armed Bandits With Costly Probes
    Elumar, Eray Can
    Tekin, Cem
    Yagan, Osman
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2025, 71 (01) : 618 - 643
  • [46] On Optimal Foraging and Multi-armed Bandits
    Srivastava, Vaibhav
    Reverdy, Paul
    Leonard, Naomi E.
    2013 51ST ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2013, : 494 - 499
  • [47] MULTI-ARMED BANDITS AND THE GITTINS INDEX
    WHITTLE, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1980, 42 (02): : 143 - 149
  • [48] Multi-armed bandits with episode context
    Christopher D. Rosin
    Annals of Mathematics and Artificial Intelligence, 2011, 61 : 203 - 230
  • [49] Multi-armed bandits with switching penalties
    Asawa, M
    Teneketzis, D
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (03) : 328 - 348
  • [50] Active Learning in Multi-armed Bandits
    Antos, Andras
    Grover, Varun
    Szepesvari, Csaba
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2008, 5254 : 287 - +