Mathematical properties of a semi-classical signal analysis method: noisy signal case

被引:0
|
作者
Liu, Da-Yan [1 ]
Laleg-Kirati, Taous-Meriem [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Math & Comp Sci & Engn Div, Thuwal, Saudi Arabia
来源
2012 1st International Conference on Systems and Computer Science (ICSCS) | 2012年
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, a new signal analysis method based on a semi-classical approach has been proposed In The main idea in this method is to interpret a signal as a potential of a Schrodinger operator and then to use the discrete spectrum of this operator to analyze the signal. In this paper, we are interested in a mathematical analysis of this method in discrete case considering noisy signals.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Chaos analysis of a semi-classical nuclear billiard model
    Bordeianu, C. C.
    Felea, D.
    Besliu, C.
    Jipa, A.
    Grossu, I. V.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (1-3) : 199 - 201
  • [42] Semi-classical Time-frequency Analysis and Applications
    Elena Cordero
    Maurice de Gosson
    Fabio Nicola
    Mathematical Physics, Analysis and Geometry, 2017, 20
  • [43] Semi-classical analysis on H-type groups
    Kammerer, Clotilde Fermanian
    Fischer, Veronique
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (06) : 1057 - 1086
  • [44] Semi-classical analysis on H-type groups
    Clotilde Fermanian Kammerer
    Véronique Fischer
    Science China Mathematics, 2019, 62 : 1057 - 1086
  • [45] Semi-classical analysis of the inner product of Bethe states
    Bettelheim, Eldad
    Kostov, Ivan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (24)
  • [46] The method of finite-gap integration in classical and semi-classical string theory
    Vicedo, Benoit
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (12)
  • [47] NEW METHOD FOR DETERMINING SEMI-CLASSICAL EIGENVALUES IN NONSEPARABLE SYSTEMS
    SCHATZ, GC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (03): : 280 - 281
  • [48] FAILURE OF RENORMALIZATION-GROUP METHOD IN SEMI-CLASSICAL LIMIT
    MATTIS, DC
    SCHILLING, R
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (24): : L729 - L732
  • [49] A nonadiabatic semi-classical method for dynamics of atoms in optical lattices
    S. Jonsell
    C. M. Dion
    M. Nylén
    S. J.H. Petra
    P. Sjölund
    A. Kastberg
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2006, 39 : 67 - 74
  • [50] An alternative method for noisy autoregressive signal estimation
    Zheng, WX
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL V, PROCEEDINGS, 2002, : 349 - 352