Cation Miscibility and Lithium Mobility in NASICON Li1+xTi2-xScx(PO4)3 (0 ≤ x ≤ 0.5) Series: A Combined NMR and Impedance Study

被引:57
|
作者
Kahlaoui, Radhouene [1 ]
Arbi, Kamel [2 ,3 ]
Sobrados, Isabel [2 ]
Jimenez, Ricardo [2 ]
Sanz, Jesus [2 ]
Ternane, Riadh [1 ]
机构
[1] Univ Carthage, Fac Sci Bizerte, Lab Applicat Chim Ressources & Subst Nat & Enviro, Zarzouna 7021, Bizerte, Tunisia
[2] CSIC, ICMM, Madrid 28049, Spain
[3] Delft Univ Technol, Fac Civil Engn & Geosci, Dept Mat & Environm, Microlab, Delft, Netherlands
关键词
SOLID ELECTROLYTES; NEUTRON-DIFFRACTION; IONIC-CONDUCTIVITY; MAS NMR; CONDUCTORS; TRANSITION; NUCLEAR; NA;
D O I
10.1021/acs.inorgchem.6b02274
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Rhombohedral NASICON compounds with general formula Li1+xTi2-xScx(PO4)(3) (0 <= x <= 0.5) have been prepared using a conventional solid-state reaction and characterized by X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and impedance spectroscopy. The partial substitution of Ti4+ by Sc3+ and Li+ in pristine LiTi2(PO4)(3) increases unit-cell dimensions and the number of charge carriers. In Sc-rich samples, the analysis of XRD data and Li-6/Li-7, P-31, and Sc-45 MAS NMR spectra confirms the presence of secondary LiScO2 and LiScP2O7 phases that reduce the amount of lithium incorporated in the NASICON phase. In samples with x < 0.3, electrostatic repulsions between Li ions located at M1 and M3 sites increase Li mobility. For x >= 0.3, ionic conductivity decreases because of secondary nonconducting phases formed at grain boundaries of the NASICON particles (core-shell structures). For x = 0.2, high bulk conductivity (2.5 x 10(-3) S.cm(-1)) and low activation energy (E-a = 0.25 eV) measured at room temperature make Li1.2Ti1.8Sc0.2(PO4)(3) one of the best lithium ionic conductors reported in the literature. In this material, the vacancy arrangement enhances Li conductivity.
引用
收藏
页码:1216 / 1224
页数:9
相关论文
共 50 条
  • [41] Synthesis, structural characterization and ionic conductivity of NASICON-type Bax/2Li1-xTi2(PO4)3 (0.4 ≤ x ≤ 1) materials
    Kahlaoui, R.
    Arbi, K.
    Jimenez, R.
    Sobrados, I.
    Mehnaoui, M.
    Sanz, J.
    Ternane, R.
    IONICS, 2017, 23 (04) : 837 - 846
  • [42] Synthesis, structural characterization and ionic conductivity of NASICON-type Bax/2Li1-xTi2(PO4)3 (0.4 ≤ x ≤ 1) materials
    R. Kahlaoui
    K. Arbi
    R. Jimenez
    I. Sobrados
    M. Mehnaoui
    J. Sanz
    R. Ternane
    Ionics, 2017, 23 : 837 - 846
  • [43] Durability of the Li1+xTi2-xAlx(PO4)3 Solid Electrolyte in Lithium Sulfur Batteries
    Wang, Shaofei
    Ding, Yu
    Zhou, Guangmin
    Yu, Guihua
    Manthiram, Arumugam
    ACS ENERGY LETTERS, 2016, 1 (06): : 1080 - 1085
  • [44] Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2-x(PO4)3:: impedance, X-ray and NMR studies
    Best, AS
    Forsyth, M
    MacFarlane, DR
    SOLID STATE IONICS, 2000, 136 : 339 - 344
  • [45] Lithium mobility in the NASICON-type compound LiTi2(PO4)(3) by nuclear magnetic resonance and impedance spectroscopies
    Paris, MA
    MartinezJuarez, A
    Rojo, JM
    Sanz, J
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1996, 8 (29) : 5355 - 5366
  • [46] Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2−x(PO4)3 NASICON-type materials
    Radhouene Kahlaoui
    Kamel Arbi
    Ricardo Jimenez
    Isabel Sobrados
    Jesus Sanz
    Riadh Ternane
    Journal of Materials Science, 2020, 55 : 8464 - 8476
  • [47] Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi2-x(PO4)3 NASICON-type materials
    Kahlaoui, Radhouene
    Arbi, Kamel
    Jimenez, Ricardo
    Sobrados, Isabel
    Sanz, Jesus
    Ternane, Riadh
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (20) : 8464 - 8476
  • [48] Cation mobility in lithium tantalum phosphate and in the solid solution Li0.5H0.5Ta(PO4)2 · 2H2O
    Stenina, I.A.
    Chuvaev, V.F.
    Yaroslavtsev, A.B.
    Zhurnal Neorganicheskoj Khimii, 42 (11): : 1796 - 1799
  • [49] Synthesis and lithium ionic conductivity of Li3-2x(In1-xZrx)2(PO4)3 (0≤x≤0.20)
    Yoshikawa, K
    Hayakawa, N
    Suzuki, T
    Uematsu, K
    Toda, K
    Sato, M
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (6-7) : 879 - 882
  • [50] Unexpected cationic distribution in tetrahedral/octahedral sites in nominal Li1+xAlxGe2-x(PO4)3 NASICON series
    Maldonado-Manso, Pilar
    Martin-Sedeno, M. C.
    Bruque, Sebastian
    Sanz, Jesus
    Losilla, Enrique R.
    SOLID STATE IONICS, 2007, 178 (1-2) : 43 - 52