Active classification with arrays of tunable chemical sensors

被引:2
|
作者
Gosangi, Rakesh [1 ]
Gutierrez-Osuna, Ricardo [1 ]
机构
[1] Texas A&M Univ, Dept Comp Sci & Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Active sensing; Sensor arrays; Chemical classification; Metal-oxide sensors; Fably-Perot interferometers; TEMPERATURE MODULATION; IDENTIFICATION; OPTIMIZATION; LOCALIZATION; VISION;
D O I
10.1016/j.chemolab.2014.01.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents Posterior-Weighted Active Search (PWAS), an active-sensing algorithm for classification of volatile compounds with arrays of tunable chemical sensors. The algorithm combines concepts from feature subset selection and sequential Bayesian filtering to optimize the sensor array tunings on-the-fly based on information from previous measurements. Namely, the algorithm maintains an estimate of the posterior probability associated with each chemical class, and updates it sequentially upon arrival of each new sensor observations. The updated posteriors are then used to bias the selection of the next sensor tunings towards the most likely classes, in this way reducing the number of measurements required for discrimination. We characterized PWAS on a database of infrared absorption spectra with 250 analytes, and then validated it experimentally on an array of metal-oxide sensors. Our results show that PWAS outperforms passive-sensing approaches based on sequential forward selection, both in terms of classification performance and robustness to noise in sensor measurements. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 102
页数:12
相关论文
共 50 条
  • [41] Porphyrin-based chemical sensors and multisensor arrays operating in the liquid phase
    Lvova, Larisa
    Di Natale, Corrado
    Paolesse, Roberto
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 179 : 21 - 31
  • [42] Scalable arrays of chemical vapor sensors based on DNA-decorated graphene
    Kybert, Nicholas J.
    Han, Gang Hee
    Lerner, Mitchell B.
    Dattoli, Eric N.
    Esfandiar, Ali
    Johnson, A. T. Charlie
    NANO RESEARCH, 2014, 7 (01) : 95 - 103
  • [43] Chemical sensors using peptide-functionalized conducting polymer nanojunction arrays
    Aguilar, AD
    Forzani, ES
    Li, XL
    Tao, NJ
    Nagahara, LA
    Amlani, I
    Tsui, R
    APPLIED PHYSICS LETTERS, 2005, 87 (19) : 1 - 3
  • [44] SOLUBILITY INTERACTIONS AND THE DESIGN OF CHEMICALLY SELECTIVE SORBENT COATINGS FOR CHEMICAL SENSORS AND ARRAYS
    GRATE, JW
    ABRAHAM, MH
    SENSORS AND ACTUATORS B-CHEMICAL, 1991, 3 (02) : 85 - 111
  • [45] TUNABLE GAS SENSORS
    MECEA, VM
    SENSORS AND ACTUATORS B-CHEMICAL, 1993, 16 (1-3) : 265 - 269
  • [46] Personalized Active Learning for Activity Classification Using Wireless Wearable Sensors
    Xu, Jie
    Song, Linqi
    Xu, James Y.
    Pottie, Gregory J.
    van der Schaar, Mihaela
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (05) : 865 - 876
  • [47] Active Concentration-Independent Chemical Identification With a Tunable Infrared Sensor
    Huang, Jin
    Gosangi, Rakesh
    Gutierrez-Osuna, Ricardo
    IEEE SENSORS JOURNAL, 2012, 12 (11) : 3135 - 3142
  • [48] Optical sensors (optodes) for multiparameter chemical imaging: classification, challenges, and prospects
    Kalinichev, Andrey V.
    Zieger, Silvia E.
    Koren, Klaus
    ANALYST, 2023, 149 (01) : 29 - 45
  • [49] Multispectral Classification With Bias-Tunable Quantum Dots-in-a-Well Focal Plane Arrays
    Paskaleva, Biliana S.
    Jang, Woo-Yong
    Bender, Steven C.
    Sharma, Yagya D.
    Krishna, Sanjay
    Hayat, Majeed M.
    IEEE SENSORS JOURNAL, 2011, 11 (06) : 1342 - 1351
  • [50] Fluoro-Substituted Metal Phthalocyanines for Active Layers of Chemical Sensors
    Klyamer, Darya
    Bonegardt, Dmitry
    Basova, Tamara
    CHEMOSENSORS, 2021, 9 (06)