Melanoma Disease Detection Using Convolutional Neural Networks

被引:0
|
作者
Sanketh, Ravva Sai [1 ]
Bala, M. Madhu [1 ]
Reddy, Panati Viswa Narendra [1 ]
Kumar, G. V. S. Phani [1 ]
机构
[1] Inst Aeronaut Engn, Dept Comp Sci & Engn, Hyderabad, India
关键词
Skin cancer; deep learning; convolution neural networks; !text type='Python']Python[!/text;
D O I
10.1109/iciccs48265.2020.9121075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There are different forms of cancers out of which skin cancer is the most common one, Usually, Every year the people infected by Skin Cancer will be more than the number of people infected by all other types of cancer combined. Mortality rates of skin cancer in the world have risen. According to the World Health Organization, the early finding of transformations of the skin significantly improve the chances of good medication and treatment so that the patient can be saved. The Computer system integrated with the software developed from deep learning, namely convolutional neural networks (CNN), is good at detecting skin cancer than experienced dermatologists, so now We had extended this Deep Learning Architecture to develop a model that categorizes the given infected skin image of patient as Malignant (Melanoma or Harmful) or Benign (Harmless) By using various libraries in Python. This model is trained and tested by using dataset taken from International Skin Imaging Collaboration(ISIC). The main aim of this model is to detect skin cancer for patients in earlier stages and treat them effectively so that we can reduce the mortality rate.
引用
收藏
页码:1031 / 1037
页数:7
相关论文
共 50 条
  • [11] DermaDL: advanced Convolutional Neural Networks for automated melanoma detection
    Rodrigues-Jr, Jose F.
    Brandoli, Bruno
    Amer-Yahia, Sihem
    2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 504 - 509
  • [12] Automatic Detection of Melanoma with Yolo Deep Convolutional Neural Networks
    Nie, Yali
    Sommella, Paolo
    O'Nils, Mattias
    Liguori, Consolatina
    Lundgren, Jan
    2019 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2019,
  • [13] Convolutional neural networks for the detection of malignant melanoma in dermoscopy images
    Kwiatkowska, Dominika
    Kluska, Piotr
    Reich, Adam
    POSTEPY DERMATOLOGII I ALERGOLOGII, 2021, 38 (03): : 412 - 420
  • [14] Automated Disease Detection in Gastroscopy Videos Using Convolutional Neural Networks
    Zhang, Chenxi
    Xiong, Zinan
    Chen, Shuijiao
    Ding, Alex
    Cao, Yu
    Liu, Benyuan
    Liu, Xiaowei
    FRONTIERS IN MEDICINE, 2022, 9
  • [15] Lesion Segmentation and Automated Melanoma Detection using Deep Convolutional Neural Networks and XGBoost
    Hung N Pham
    Koay, Chin Yang
    Chakraborty, Tanmoy
    Gupta, Sudhanshu
    Tan, Boon Leong
    Wu, Huaqing
    Vardhan, Apurva
    Quang H Nguyen
    Palaparthi, Nirmal Raja
    Binh P Nguyen
    Chua, Matthew C. H.
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING (ICSSE), 2019, : 142 - 147
  • [16] Detection of Arrhythmia Using Convolutional Neural Networks
    Greeshma, Burla
    Sireesha, Moturi
    Rao, S. N. Thirumala
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 21 - 30
  • [17] Supernovae Detection by Using Convolutional Neural Networks
    Cabrera-Vives, Guillermo
    Reyes, Ignacio
    Forster, Francisco
    Estevez, Pablo A.
    Maureira, Juan-Carlos
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 251 - 258
  • [18] Wheeze Detection Using Convolutional Neural Networks
    Kochetov, Kirill
    Putin, Evgeny
    Azizov, Svyatoslav
    Skorobogatov, Ilya
    Filchenkov, Andrey
    PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2017), 2017, 10423 : 162 - 173
  • [19] Object Detection Using Convolutional Neural Networks
    Galvez, Reagan L.
    Bandala, Argel A.
    Dadios, Elmer P.
    Vicerra, Ryan Rhay P.
    Maningo, Jose Martin Z.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 2023 - 2027
  • [20] Drone Detection Using Convolutional Neural Networks
    Mahdavi, Fatemeh
    Rajabi, Roozbeh
    2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,